The multi-type bisexual Galton-Watson process with superadditive mating

Nicolás Zalduendo

Joint work with Coralie Fritsch and Denis Villemonais

Mathematical Models in Ecology and Evolution Reading University

July 19th, 2022

The multi-type bisexual Galton-Watson process with superadditive mating.

• It models the evolution of a population in discrete time.

The multi-type bisexual Galton-Watson process with superadditive mating.

- It models the evolution of a population in discrete time.
- There are two disjoint classes: females and males. They form couples who accomplish reproduction.

The multi-type bisexual Galton-Watson process with superadditive mating.

- It models the evolution of a population in discrete time.
- There are two disjoint classes: females and males. They form couples who accomplish reproduction.
- There are different (finite) types of females, types of males and types of couples.

The multi-type bisexual Galton-Watson process with superadditive mating.

- It models the evolution of a population in discrete time.
- There are two disjoint classes: females and males. They form couples who accomplish reproduction.
- There are different (finite) types of females, types of males and types of couples.
- Later.

Consider a function $\xi: \mathbb{R}^3_+ \times \mathbb{R}^2_+ \longrightarrow \mathbb{R}^2_+$ with $\xi(0,0) = 0$, and the following process,

) (C) $Z_0 = (1,2)$

Consider a function $\xi: \mathbb{R}^3_+ \times \mathbb{R}^2_+ \longrightarrow \mathbb{R}^2_+$ with $\xi(0,0) = 0$, and the following process,

Consider a function $\xi : \mathbb{R}^3_+ \times \mathbb{R}^2_+ \longrightarrow \mathbb{R}^2_+$ with $\xi(0,0) = 0$, and the following process,

Consider a function $\xi : \mathbb{R}^3_+ \times \mathbb{R}^2_+ \longrightarrow \mathbb{R}^2_+$ with $\xi(0,0) = 0$, and the following process,

Consider a function $\xi : \mathbb{R}^3_+ \times \mathbb{R}^2_+ \longrightarrow \mathbb{R}^2_+$ with $\xi(0,0) = 0$, and the following process,

 $(Z_n)_{n \in \mathbb{N}}$ is the multi-type bisexual Galton-Watson process with mating function ξ .

In general,

for a mating function $\xi : \mathbb{R}^{n_f}_+ \times \mathbb{R}^{n_m}_+ \longrightarrow \mathbb{R}^{p}_+$.

$$\xi(x_1 + x_2, y_1 + y_2) \ge \xi(x_1, y_1) + \xi(x_2, y_2).$$

$$\xi(x_1 + x_2, y_1 + y_2) \ge \xi(x_1, y_1) + \xi(x_2, y_2).$$

$$\xi(x_1 + x_2, y_1 + y_2) \ge \xi(x_1, y_1) + \xi(x_2, y_2).$$

$$\xi(x_1 + x_2, y_1 + y_2) \ge \xi(x_1, y_1) + \xi(x_2, y_2).$$

Proposition

The function $R: \mathbb{R}^p_+ \longrightarrow (\mathbb{R}_+ \cup \{+\infty\})^p$ given by

$$R(z) = \lim_{k \to +\infty} \frac{\mathbb{E}(Z_1 \mid Z_0 = \lfloor kz \rfloor)}{k}$$

is well defined.

Proposition

The function $R: \mathbb{R}^p_+ \longrightarrow (\mathbb{R}_+ \cup \{+\infty\})^p$ given by

$$R(z) = \lim_{k \to +\infty} \frac{\mathbb{E}(Z_1 \mid Z_0 = \lfloor kz \rfloor)}{k}$$

is well defined.

Proposition

The function $R: \mathbb{R}^p_+ \longrightarrow (\mathbb{R}_+ \cup \{+\infty\})^p$ given by

$$R(z) = \lim_{k \to +\infty} \frac{\mathbb{E}(Z_1 \mid Z_0 = \lfloor kz \rfloor)}{k} = \sup_{k > 0} \frac{\mathbb{E}(Z_1 \mid Z_0 = \lfloor kz \rfloor)}{k}$$

is well defined.

Proposition

The function $R: \mathbb{R}^p_+ \longrightarrow (\mathbb{R}_+ \cup \{+\infty\})^p$ given by

$$R(z) = \lim_{k \to +\infty} \frac{\mathbb{E}(Z_1 \mid Z_0 = \lfloor kz \rfloor)}{k} = \sup_{k > 0} \frac{\mathbb{E}(Z_1 \mid Z_0 = \lfloor kz \rfloor)}{k}$$

is well defined.

Theorem [Fritsch - Villemonais - Z.]

Consider
$$z \in \mathbb{N}^p$$
 and let $Z_0^{(k)} \sim_{k o +\infty} kz$.
Then, for all $n \geq 0$,

 $Z_n^{(k)} \sim_{k \to +\infty} R^n(kz)$ a.s. and in L^1 .

Fact: *R* is concave.

For the rest, extra assumptions:

• Transcience, which implies:

$$\mathbb{P}\left(\lim_{n\to\infty}|Z_n|\in\{0,+\infty\}\middle|Z_0=z\right)=1,\quad\forall z\in\mathbb{N}^p.$$

• There exists $n_0 \in \mathbb{N}$ such that for all $n \ge n_0$ and all $z \ne 0$,

 $R^n(z) > 0$

For the rest, extra assumptions:

• Transcience, which implies:

$$\mathbb{P}\left(\lim_{n\to\infty}|Z_n|\in\{0,+\infty\}\middle|Z_0=z\right)=1,\quad\forall z\in\mathbb{N}^p.$$

• There exists $n_0 \in \mathbb{N}$ such that for all $n \ge n_0$ and all $z \ne 0$,

 $R^n(z) > 0$

Theorem [Krause, '94]

The eigenvalue problem

$$R(z^*) = \lambda^* z^*$$

has a unique solution with $\lambda^* > 0$ and $z^* \in (\mathbb{R}_+)^p$, $z^* > 0$, $|z^*| = 1$.

 $\ensuremath{ \bullet \ } \ensuremath{ \bullet \ } \ensuremat$

1

$$\lim_{n\to+\infty}\frac{R^n(z)}{(\lambda^*)^n}=\mathcal{P}(z)z^*$$

Define

$$q_z = \mathbb{P}(\exists n \in \mathbb{N}, Z_n = 0 | Z_0 = z)$$

Define

$$q_z = \mathbb{P}(\exists n \in \mathbb{N}, Z_n = 0 | Z_0 = z)$$

Theorem [Fritsch - Villemonais - Z.]

Assume R is finite. Then,

$$\lambda^* \leq 1 \iff q_z = 1, \forall z \in \mathbb{N}^p.$$

If $\lambda^* > 1$ or if there exists $z' \in (\mathbb{R}_+)^p$ such that R(z') is not finite, then there exists r > 0 such that $q_v < 1$ for all $v \in \mathbb{N}^p$ with $|v| \ge r$.

Asymptotic Behaviour

Set

 $X_{i,j} = \#$ females of type *j* produced by a single couple of type *i*. $Y_{i,j} = \#$ males of type *j* produced by a single couple of type *i*. $\mathbb{X}_{i,j} = \mathbb{E}(X_{i,j}), \ \mathbb{Y}_{i,j} = \mathbb{E}(Y_{i,j}).$

Asymptotic Behaviour

Set

 $X_{i,j} = \#$ females of type j produced by a single couple of type i. $Y_{i,j} = \#$ males of type j produced by a single couple of type i. $\mathbb{X}_{i,j} = \mathbb{E}(X_{i,j}), \ \mathbb{Y}_{i,j} = \mathbb{E}(Y_{i,j}).$

Theorem [Fritsch - Villemonais - Z.]

Assume $R < +\infty$. For all $z \in \mathbb{N}^p$ there exists a positive r.v. \mathcal{W} such that

$$\frac{Z_n}{(\lambda^*)^n} \xrightarrow[n \to +\infty]{} \mathcal{W}z^*, \ \frac{F_n}{(\lambda^*)^{n+1}} \xrightarrow[n \to +\infty]{} \mathcal{W}z^*\mathbb{X}, \ \frac{M_n}{(\lambda^*)^{n+1}} \xrightarrow[n \to +\infty]{} \mathcal{W}z^*\mathbb{Y},$$

 $\mathbb{P}(\cdot \mid Z_0 = z) - \text{a.s..}$ If $\mathbb{E}(X_{i,j} \log X_{i,j}) < +\infty$, $\mathbb{E}(Y_{i,j} \log Y_{i,j}) < +\infty$ for all i, j + some regularityassumptions over ξ and R, then the limit is in L^1 and for all z and up to a $\mathbb{P}(\cdot \mid Z_0 = z)$ negligible event,

$$\{\mathcal{W}=0\}=\{\exists n\in\mathbb{N},\ Z_n=0\}.$$

The multi-type bisexual Galton-Watson process with superadditive mating

Nicolás Zalduendo

Joint work with Coralie Fritsch and Denis Villemonais

Mathematical Models in Ecology and Evolution Reading University

July 19th, 2022

Examples

Some examples:

- Multi-type perfect fidelity mating:
 - ▶ $n_f = n_m = p$.
 - $\xi(x,y) = \min\{x,y\}.$
 - $\blacktriangleright R(z) = \min\{z\mathbb{F}, z\mathbb{M}\}.$

Examples

Some examples:

- Multi-type perfect fidelity mating:
 - $\blacktriangleright n_f = n_m = p.$
 - $\xi(x,y) = \min\{x,y\}.$
 - $\blacktriangleright R(z) = \min\{z\mathbb{F}, z\mathbb{M}\}.$
 - A particular case: F = αU, M = (1 − α)U. In this case λ* = min{α, 1 − α}λ^{*}_U, z* = z^{*}_U.

Examples

Some examples:

- Multi-type perfect fidelity mating:
 - $\blacktriangleright n_f = n_m = p.$
 - $\xi(x,y) = \min\{x,y\}.$
 - $\blacktriangleright R(z) = \min\{z\mathbb{F}, z\mathbb{M}\}.$
 - A particular case: F = αU, M = (1 − α)U. In this case λ* = min{α, 1 − α}λ^{*}_U, z* = z^{*}_U.

Multi-type completely promiscuous mating [Karlin - Kaplan, 1973]:

•
$$p = n_f$$
.

$$\xi(x,y) = x \prod_{i=1}^{m} \mathbb{1}_{y_i > 0}.$$

nm

$$\blacktriangleright R(z) = (z\mathbb{F})\mathbb{1}_{z\mathbb{M}>0}.$$

In this case λ^{*} = λ^{*}_𝔽.