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The (multi-type) asexual Galton-Watson process

We consider the extension of the previous model to dimension p.

Detfine the process (Z )nEN C NP given by

n+1] Z Z V(k n)'

=1 k=1
ka
where for every 1 <i < p, (Vl( ”))k,neN are

@ Zy=(1,1,1)

I.i.d. random vectors.
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Detfine the process (Z )neN C NP given by
k,
Lyy1j = Z Z Ve, Z, = (1,1,1)
=1 k=1
where forevery 1 <i < p, (Vl.(,lf’”))k,neN are Z, = (2,1,3)
.i.d. random vectors.
ZQ — (29392)

Setting the matrix A; ; := E(V; ;) < + o0, we

have that Branching Property

n——+0oo

/ >0 = 1* < 1,

n

d.S.

where A* is the largest eigenvalue of A.
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The (single-type) bisexual Galton-Watson process

Given Z, couples,

Zn Zn

Foyr = ZX("’”) and M, ., = ZY("’”)
k=1 k=1

where (X%, Y(k’m))k,neN are i.i.d. random vectors.

We then set
Zn+1 — 5(Fn+1’Mn+1)9

where £ is the mating function

2/18

©



The (single-type) bisexual Galton-Watson process

Zo=2
Given Z, couples, @ i
F ., = i xkn and M, = iy(k,n) 0 G 0 bl oo |
k=1 k=1

where (X%, Y(k’")))k,neN are i.i.d. random vectors.

We then set
Zn+1 — 5(Fn+1’Mn+1)9

where ¢ is the mating function

2/18



The (single-type) bisexual Galton-Watson process

N
|
o)

Given Z, couples, G

Zn Zn
= 30 and = 3ty OO E® =5 =2
k=1 k=1

where (X%, Y(k’m))k,neN are i.i.d. random vectors.

We then set
Zn+1 — 5(Fn+1’Mn+1)9

where £ is the mating function

2/18
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We then set

é( n+1° n+1)9

where £ is the mating functlon

Pertect fidelity mating &(x, y) = min{x, y} .
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The (single-type) bisexual Galton-Watson process

Zy =2
Given Z, couples, z @ |
Z Z
Foy1 S ZX(k’”) and M, = ZY("’”) e e 0 Fy=3, M =2

k=1 k=1

. Z, =E&32)=2
where (X% Y(k’”)))k,neN are i.i.d. random vectors. 1= 6(3,2)

We then set

Fr=1,M,=2
Zn+1 — 5(Fn+19Mn+1)9 2 2

where & is the mating function @ Z,=1

Reproduction Step

/ \ Perfect fidelity mating £(x, y) = min{x, y}.

(Zn)neN (Fn’ Mn)nEN

‘\ / No branching property

Mating Step
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Some references on bisexual processes

General results on single-type process

[Daley, '68] First definition of the bisexual Galton-Watson process (bGWp)

[Daley, Hull & Taylor, '86] Extinction condition with superadditive mating function:

dr € [0, + co] suchthatP(Z, - 0| Zy=k) =1, VkeNo r<1.
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[Daley, Hull & Taylor, '86] Extinction condition with superadditive mating function:

dr € [0, + co] suchthatP(Z, - 0| Zy=k) =1, VkeNo r<1.

What about multi-type?

‘Gonzalez, H
Martinez, '1°

ull, Martinez & Mota '06; Gonzalez, Martinez & Mote ‘08 & '09; Alsmeyer, Gutierrez &
]

A model wit

n two types of males and one type of female in a genetic context.
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Assumptions on the Offspring Distribution

R duction st
SPIOGUCLION Step: 1. All couples reproduce independently

X(k”), and M y k)
n+11 ZZ n+lj ZZ 2.Foralli,j, X andY arelntegrable

=1 k=1 =1 k=1
Xi,j= - (X l,J)a ij — (i,j)

I\/Iating step:
5(( n+1,1> - Fn+1 qf) ( n+1,1° ""Mn+1,qm)) y
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First Properties

M) = lim (2, | Zy = |kz])

k— 400 k

N is positively homogeneous:
Ni(az) = ad(2),
foralla > 0andz € R,

M is superadditive:
M(z; + 25) > M(z)) + M(z).
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First Properties

(2, | Zy = |kz])

M(z) = lim
k—+o0 k
N is positively homogeneous:
Ni(az) = adi(2), I is a concave function:
foralla>0andz € R;. * Mnzy + (1 = M2) 2 M) + (1 = MM (),
I is superadditive: foralln € (0,1) and z;,z, € RE.

M(z) + 25) = M(z) + M(zy).
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LLN for large initial population

Theorem I: Assume I < + co. Consider z € NP and denote for k > 1, (Z,(k)), o the process with initial
condition Z,(k) = kz. Then, for all n € N, we have

Z,(K) (-+too
"li ) ko > IM(z) a.s.and in L.

The result also holds if we consider a random sequence of initial conditions (z;),cn With z,/k = z a.s.
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Theorem I: Assume I < + co. Consider z € NP and denote for k > 1, (Z,(k)), o the process with initial

condition Z,(k) = kz. Then, for all n € N, we have

k

> M"(z) a.s.and in L.

The result also holds if we consider a random sequence of initial conditions (z;),cn With z,/k = z a.s.
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> 2000 >
o o
3 & 2000
g -
g 1500 g
_“ w 1500
1000
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500 500
O - T T T T O T T T T T
0 100 200 300 400 500 600 0 100 200 300 400 500 600

Number of Mating Units of Type 1
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Number of Mating Units of Type 1

n=5 k=35
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LLN for large initial population: consequences

The iterations of I will play a fundamental role in the asymptotic behaviour for large population. In
addition:

-(Z | Zy = |k -(Z | Zy = |k
M (z) = lim 1% = (k2] = sup | % LZJ).
k—+00 k >1 k

In particular fork =1

M (2) 2 E(Z, | Zy = |2])
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addition:

-(Z | Zy = |k -(Z | Zy = |k
M (z) = lim 1% = (k2] = sup | % LZJ).
k—+00 k >1 k

In particular fork =1

M (2) 2 E(Z, | Zy = |2])

In addition, we obtain a second definition for I in terms of the mating function:

keX, kzY keX, koY
M) = lim oY) gy SEEO R

Example: For the multi-type pertect fidelity mating, we have
M(z) = (min{(zX);, (zY);}, ... min{(2X),, (zY),}).

10/18



Concave Perron-Frobenius theory

We suppose that I is a primitive function. That is, there exists n, € N such that for all n > n,, and all
z € RE,M"(z) > 0.

Theorem [Krause, 1994]: It M : RY — R’ is a concave, positively homogeneous and primitive
function, then the problem Mi(z) = Az has a unique solution 4* > 0and z* > 0, ||z*|| = 1.

There exists a function & : Rﬁ — R such that

@) .
kEI—Poo Q¥ FHe
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LLN for the complete trajectory

Theorem llI: Assume IN < + oo and that 4* > 1. There exists ny € N, such that for all e, € (0,1), there

exists r > 0 such thatif ||z]| > r,
p (zno £0etVn>ng, Z.i €11 =&MZ), (1 +MZ)] | Z, = z) >1—y.
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Theorem llI: Assume IN < + oo and that 4* > 1. There exists ny € N, such that for all e, € (0,1), there

exists r > 0 such thatif ||z]| > r,
p (zno £0etVn>ng, Z.i €11 =&MZ), (1 +MZ)] | Z, = z) >1—y.

With high probability In addition, under the event of non-extinction
(1 — 8)mmm(zn) < Zn+m <+ g)mmm(zn) {Zn #+ 0, Vn € N} we have IPZ—a.s..

Positive probability of survival in the case lim Zn — %

where A* > 1. n—+oo || Z,]

13/18



Table of Contents

l1l. Results

Long time behaviour



Extinction condition

We suppose (Z,), oy is transient. Then P ( lim |[Z || € {0+ oo}) = 1.

n—+0o0

We define the probability of extinction
q, = P(Z,

n—4+0oo

Theorem lll: Assume IN is finite. Then,

AF<leqg =1 VzeN

it A* > 1 orif there exists 7' € R/ such that M(z’) is not finite, then there exists r > 0 such that g, < 1 for
all v.e NP with ||v]| > 7.
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Asymptotic profile

Recall that we have

Fop ;= ZZX("”) and M, ;= ZZY("”‘)

=1 k=1 =1 k=1

and the matrices

R
|

i = BE(X; ), Y = E())

Theorem IV: Assume I is finite. For all z € NP there exists a non-negative random variable € such that

/
n n—>+oo n n——+00 n n——+00
> G7F > G7FX, > G,

(AF)" < (,pk)n—l (A*)n—l

[p)( . ‘ ZO — Z)—a.S.

It in addition € is non-degenerate at 0 for some z € N?, then up to a P( - | Z, = z7)—negligible event,
{(€¢=0}={3dneN,Z =0}.
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L' Convergence under a VIogV—condition

Proposition I: Assume that E(X; ;1og X; ) < + oo, E(Y;;log?Y; ;) < + oo for all i, j, and that

c(2X,zY)  M(2)
|z |z

for some C, a > 0. Then the convergence in Theorem IV holds in L' and the random variable & is non-

<C|z|™*, Vz e NP,

degenerate at 0.
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Conclusions

- We studied a population model with superadditive mating and different types, achieving:

e Two LLN in large population.
e Sufficient and necessary condition for extinction.

e Sufficient condition for exponential growth in the supercritical case.
® Existence of a continuum of QSDs in the subcritical case.
- We studied some particular cases of:

e Continuous time two-sex birth and death process.

e Models with random mating.

17/18



Perspectives

- Methods to approximate A* and z* need to be developed (work with D. Villemonais and J. Corujo).

- Continuous time versions of the model (work with E. Horton).

- Model with a continuum of traits (work S. Méléard and A. Véber)

- Different models with non-superadditive mating. Models that consider competition of individuals

- Study existence of QSDs in the critical case.
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Existence of QSDs

We suppose that N is finite and that A* < 1.

We are interested in the existence of probability measures v over NP\ {0} such that
PZ -2 #0) =uv(-).

The exponential absorption parameter is 8 € [0,1] such that

P (Z, # 0)= 0"
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Existence of QSDs

We suppose that N is finite and that A* < 1.

We are interested in the existence of probability measures v over NP\ {0} such that
PZ -2 #0) =uv(-).

The exponential absorption parameter is 8 € [0,1] such that

P (Z, # 0)= 0"

1. Existence of a continuum of QSDs.

2. Existence of a finite number of QSDs under a moment hypothesis.

3. Existence of a unique QSD under irreducibility assumption.
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Existence of a Continuum of QSDs

Theorem V: The process (£,),n @admits an infinite set of quasi-stationary distributions. More precisely,

for any 0 € (4*,1), there exists a quasi-stationary distribution v, with absorption parameter 6.

A general result is proven tor sub-Markovian kernels. Then applied for the kernel

20/18



Existence of finitely many QSDs
We define

O, = sup sup {6’ > 0,lim int 07"P_(Z, # 0) > O} .

zeNP\ {0}

We assume there exists > 1 s.t. (A*)T < @, and that

n——+0oo

“(X]) <+ oo,
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Existence of finitely many QSDs
We define

O, = sup sup {6’ > 0,lim int 07"P_(Z, # 0) > O} .

zeNP\ {0} n—+0oo

We assume there exists 1 > 1 s.t. (4*)" < §, and that -(Xl.”j) < + o0, -(Yl.”j) <+ oo foralli,j.

Theorem VI: We assume (Z)),.n aperiodic and fix a € (1,5). There exist vy, ...,v, QSDs with v(%%) < + o0
and absorption parameter 6, such that for all f < 9,

¢
Oy "n7OE(fIZ)17,20) - Z N2 (f)| < a, P (2)"
=1

with a, = 0, j and 5, functions s.t. 1, < K& for some K > 0.
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Existence of finitely many QSDs
We define

0, = sup sup {6’ > 0,lim mnt6~"P(Z, # 0) > O} .

zeNP\ {0} n—+0oo

We assume there exists 1 > 1 s.t. (4*)" < §, and that -(Xl.”j) < + o0, -(Yl.”j) <+ oo foralli,j.

Theorem VI: We assume (Z)),.n aperiodic and fix a € (1,5). There exist vy, ...,v, QSDs with v(%%) < + o0
and absorption parameter 6, such that for all f < 9,

¢
Oy "n7OE(fIZ)17,20) - Z N2 (f)| < a, P (2)"
=1

with a, = 0, j and 5, functions s.t. 1, < K& for some K > 0.

Theorem VII: In addition, it (Z,),cy is irreducible, there exists a unique QSD v gp with vygp(P7) < + 00 and

absorption parameter 6§, such that for all measure u(%“) < + o0 and |f| < .
|E,(f(Z) | Z, 7 0) —vosp(f) | < CY'u(F),

with y € (0,1).
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