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We consider the extension of the previous model to dimension  .p

The (multi-type) asexual Galton-Watson process

Z0 = (1,1,1)

Define the process   given by 

                     , 

where for every    are 
i.i.d. random vectors.

(Zn)n∈ℕ ⊆ ℕp

Zn+1,j =
p

∑
i=1

Zn,i

∑
k=1

V(k,n)
i,j

1 ≤ i ≤ p, (V(k,n)
i,⋅ )k,n∈ℕ
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Reproduction step: 

  

Mating step: 
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p
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)) .

Z0 = (1,2)Z0 = (1,2)
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1. All couples reproduce independently

2. For all  ,   and   are integrable. 
 

i, j Xi,j Yi,j
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Example: Multi-type perfect fidelity   
 

(p = qm = qf )
ξ((x1, …, xqf

), (y1, …, yqm
)) = (min{x1, y1}, …, min{xp, yp}) .
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2. We assume   superadditive: 
  

ξ
ξ(x1 + x2, y1 + y2) ≥ ξ(x1, y1) + ξ(x2, y2)

Reproduction step: 

  

Mating step: 
 

Fn+1,j =
p

∑
i=1

Zn,i

∑
k=1

X(k,n)
i,j , and Mn+1,j =

p

∑
i=1

Zn,i

∑
k=1

Y(k,n)
i,j

Zn+1 = ξ((Fn+1,1, …, Fn+1,qf
), (Mn+1,1, …, Mn+1,qm

)) .
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Definition

Consider   
given by: 

 .

𝔐 : ℝp
+ ⟶ (ℝ+ ∪ {+∞})p

𝔐(z) = lim
k→+∞

𝔼(Z1 ∣ Z0 = ⌊kz⌋)
k

ℝ2
+

z

(0,0)
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Examples

Single-type 

Multi-type 

Asexual Bisexual 

  

with   the expected offspring.

𝔐(z) = mz

m = 𝔼(V )

  

where   is the mean growth rate of the process.

𝔐(z) = rz

r

 𝔐(z) = lim
k→+∞

𝔼(Z1 ∣ Z0 = ⌊kz⌋)
k

   

with   the matrix of expected offspring. 

𝔐(z) = Az

Ai,j = 𝔼(Vi,j)
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with   the expected offspring.
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  is positively homogeneous: 
 , 

for all   and  .

𝔐
𝔐(αz) = α𝔐(z)

α > 0 z ∈ ℝp
+

  is superadditive: 
 .

𝔐
𝔐(z1 + z2) ≥ 𝔐(z1) + 𝔐(z2)

First Properties

 𝔐(z) = lim
k→+∞

𝔼(Z1 ∣ Z0 = ⌊kz⌋)
k
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LLN for large initial population

Theorem I: Assume  . Consider   and denote for  ,   the process with initial 
condition  . Then, for all  , we have 

    

The result also holds if we consider a random sequence of initial conditions   with   a.s.

𝔐 < + ∞ z ∈ ℕp k ≥ 1 (Zn(k))n∈ℕ
Z0(k) = kz n ∈ ℕ

Zn(k)
k

k→+∞ 𝔐n(z) a.s. and in L1 .

(zk)k∈ℕ zk /k → z
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LLN for large initial population

Theorem I: Assume  . Consider   and denote for  ,   the process with initial 
condition  . Then, for all  , we have 

    

The result also holds if we consider a random sequence of initial conditions   with   a.s.

𝔐 < + ∞ z ∈ ℕp k ≥ 1 (Zn(k))n∈ℕ
Z0(k) = kz n ∈ ℕ

Zn(k)
k

k→+∞ 𝔐n(z) a.s. and in L1 .

(zk)k∈ℕ zk /k → z

 n = 5, k = 5  n = 5, k = 50  n = 5, k = 500
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LLN for large initial population: consequences
The iterations of   will play a fundamental role in the asymptotic behaviour for large population. In 
addition: 

  

In particular for   
 

𝔐

𝔐n(z) = lim
k→+∞

𝔼(Zn ∣ Z0 = ⌊kz⌋)
k

= sup
k≥1

𝔼(Zn ∣ Z0 = ⌊kz⌋)
k

.

k = 1
𝔐n(z) ≥ 𝔼(Zn ∣ Z0 = ⌊z⌋) .

Example: For the multi-type perfect fidelity mating, we have 
 𝔐(z) = (min{(z𝕏)1, (z𝕐 )1}, … min{(z𝕏)p, (z𝕐 )p}) .

In addition, we obtain a second definition for   in terms of the mating function: 

  

𝔐

𝔐(z) = lim
k→+∞

ξ(kz𝕏, kz𝕐 )
k

= sup
k≥1

ξ(kz𝕏, kz𝕐 )
k
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Concave Perron-Frobenius theory

Theorem [Krause, 1994]: If   is a concave, positively homogeneous and primitive 
function, then the problem   has a unique solution   and   
There exists a function   such that 

  

𝔐 : ℝp
+ ⟶ ℝp

+
𝔐(z) = λz λ* > 0 z* > 0, ∥z*∥ = 1.

𝒫 : ℝp
+ ⟶ ℝ+

lim
k→+∞

𝔐n(z)
(λ*)n

= 𝒫(z)z*

We suppose that   is a primitive function. That is, there exists   such that for all  , and all 
 ,  

𝔐 n0 ∈ ℕ n ≥ n0
z ∈ ℝp

+ 𝔐n(z) > 0.
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LLN for the complete trajectory 

Theorem II: Assume   and that  . There exists  , such that for all  , there 
exists   such that if  , 

  

𝔐 < + ∞ λ* > 1 n0 ∈ ℕ ε, η ∈ (0,1)
r > 0 ∥z∥ > r

ℙ (Zn0
≠ 0 et ∀n ≥ n0, Zn+1 ∈ [(1 − ε)𝔐(Zn), (1 + ε)𝔐(Zn)] ∣ Z0 = z) ≥ 1 − η .

12/18
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We define the probability of extinction 
 qz = ℙ(Zn

n→+∞ 0 ∣ Z0 = z)

Theorem III: Assume   is finite. Then, 

  

If   or if there exists   such that   is not finite, then there exists   such that   for 
all   with  .

𝔐

λ* ≤ 1 ⇔ qz = 1, ∀z ∈ ℕp

λ* > 1 z′ ∈ ℝp
+ 𝔐(z′ ) r > 0 qv < 1

v ∈ ℕp ∥v∥ ≥ r

Extinction condition

We suppose  . is transient. Then  .(Zn)n∈ℕ ℙ ( lim
n→+∞

∥Zn∥ ∈ {0 + ∞}) = 1

14/18



Recall that we have 

  

and the matrices  
 

Fn+1,j =
p

∑
i=1

Zn,i

∑
k=1

X(k,n)
i,j and Mn+1,j =

p

∑
i=1

Zn,i

∑
k=1

Y(k,n)
i,j ,

𝕏i,j = 𝔼(Xi,j), 𝕐i,j = 𝔼(Yi,j)

Theorem IV: Assume   is finite. For all   there exists a non-negative random variable   such that  

  

 a.s. 

If in addition   is non-degenerate at   for some  , then up to a  negligible event, 
 

𝔐 z ∈ ℕp 𝒞
Zn

(λ*)n
n→+∞ 𝒞z*,

Fn

(λ*)n−1
n→+∞ 𝒞z*𝕏,

Mn

(λ*)n−1
n→+∞ 𝒞z*𝕐,

ℙ( ⋅ ∣ Z0 = z)−

𝒞 0 z ∈ ℕp ℙ( ⋅ ∣ Z0 = z)−
{𝒞 = 0} = {∃n ∈ ℕ, Zn = 0} .

Asymptotic profile

15/18



Proposition I: Assume that  ,   for all  , and that 

  

for some  . Then the convergence in Theorem IV holds in   and the random variable   is non-
degenerate at  . 

𝔼(Xi,j log Xi,j) < + ∞ 𝔼(Yi,j log Yi,j) < + ∞ i, j
ξ(z𝕏, z𝕐 )

|z |
−

𝔐(z)
|z |

≤ C |z |−α , ∀z ∈ ℕp,

C, α > 0 L1 𝒞
0

  Convergence under a  conditionL1 VlogV−

16/18



I. Introduction

II. The Model

III. Results

Asexual branching processes

Single-type bisexual process

Definition

Assumptions

The function  𝔐

Laws of large numbers

Long time behaviour

Table of Contents

IV. Conclusion and Perspectives



Conclusions
- We studied a population model with superadditive mating and different types, achieving:

• Two LLN in large population.

• Sufficient and necessary condition for extinction.

• Sufficient condition for exponential growth in the supercritical case.

• Existence of a continuum of QSDs in the subcritical case.

- We studied some particular cases of:

• Models with random mating.

• Continuous time two-sex birth and death process.
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Perspectives

- Different models with non-superadditive mating. Models that consider competition of individuals 

- Study existence of QSDs in the critical case.

- Methods to approximate   and   need to be developed (work with D. Villemonais and J. Corujo).λ* z*

- Continuous time versions of the model (work with E. Horton).

- Model with a continuum of traits (work S. Méléard and A. Véber)
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We suppose that   is finite and that  .𝔐 λ* < 1

We are interested in the existence of probability measures   over   such that 
 .

ν ℕp∖{0}
ℙν(Zn ∈ ⋅ ∣ Zn ≠ 0) = ν( ⋅ )

Existence of QSDs

The exponential absorption parameter is   such that 
  .

θ ∈ [0,1]
ℙν(Zn ≠ 0) = θn
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Existence of QSDs

1. Existence of a continuum of QSDs. 
2. Existence of a finite number of QSDs under a moment hypothesis. 
3. Existence of a unique QSD under irreducibility assumption.
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Theorem V: The process   admits an infinite set of quasi-stationary distributions. More precisely, 
for any  , there exists a quasi-stationary distribution   with absorption parameter  .

(Zn)n∈ℕ
θ ∈ (λ*,1) νθ θ

Existence of a Continuum of QSDs

A general result is proven for sub-Markovian kernels. Then applied for the kernel 
  K(x, dy) = ℙx(Z1 ∈ dy, Z1 ≠ 0) .
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We assume there exists   s.t.   and that   for all  .η > 1 (λ*)η < θ0 𝔼(Xη
i,j) < + ∞, 𝔼(Yη

i,j) < + ∞ i, j

Existence of finitely many QSDs
We define 

 θ0 = sup
z∈ℕp∖{0}

sup {θ > 0, lim inf
n→+∞

θ−nℙz(Zn ≠ 0) > 0} .
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We define 
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sup {θ > 0, lim inf
n→+∞

θ−nℙz(Zn ≠ 0) > 0} .

Theorem VI: We assume   aperiodic and fix  . There exist   QSDs with   
and absorption parameter   such that for all  , 

 , 

with   functions s.t.    for some  

(Zn)n∈ℕ a ∈ (1,η) ν1, …, νℓ vi(𝒫a) < + ∞
θ0 f ≤ 𝒫a

θ−n
0 n−j(z)𝔼z( f(Zn)1Zn≠0) −

ℓ

∑
i=1

ηi(z)νi( f ) ≤ αn𝒫(z)a

αn → 0, j and ηi ηi ≤ K𝒫a K > 0.
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∑
i=1

ηi(z)νi( f ) ≤ αn𝒫(z)a

αn → 0, j and ηi ηi ≤ K𝒫a K > 0.

Theorem VII: In addition, if   is irreducible, there exists a unique QSD   with   and 
absorption parameter   such that for all measure   and  . 

 . 
with  . 

(Zn)n∈ℕ νQSD vQSD(𝒫a) < + ∞
θ0 μ(𝒫a) < + ∞ | f | ≤ 𝒫a

|𝔼μ( f(Zn) ∣ Zn ≠ 0) − νQSD( f ) | ≤ Cγnμ(𝒫a)
γ ∈ (0,1)
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