Nicolás Zalduendo, INRAE Montpellier

Work in collaboration with Coralie Fritsch (Inria Nancy) and Denis Villemonais (U. de Strasbourg)

Besançon Meeting on Probability, Ecology & Evolution - December, 2024

Table of Contents

I. Introduction

Asexual branching processes

Single-type bisexual process

II. The Model

Definition

Assumptions

The function \mathfrak{M}

III. Results

Laws of large numbers

Long time behaviour

IV. Conclusion and Perspectives

Table of Contents

I. Introduction

Asexual branching processes Single-type bisexual process II. The Model Definition Assumptions The function **M III. Results** Laws of large numbers Long time behaviour **IV. Conclusion and Perspectives**

We consider the extension of the previous model to dimension *p*.

Define the process $(Z_n)_{n \in \mathbb{N}} \subseteq \mathbb{N}^p$ given by $Z_{n+1,j} = \sum_{n=1}^{p} \sum_{i=1}^{Z_{n,i}} V_{i,j}^{(k,n)},$ $i=1 \ k=1$ where for every $1 \leq i \leq p$, $(V_{i,\cdot}^{(k,n)})_{k,n\in\mathbb{N}}$ are i.i.d. random vectors.

 $Z_0 = (1,1,1)$

We consider the extension of the previous model to dimension *p*.

Define the process $(Z_n)_{n \in \mathbb{N}} \subseteq \mathbb{N}^p$ given by $Z_{n+1,j} = \sum_{n+1,j}^{p} \sum_{i=1}^{Z_{n,i}} V_{i,j}^{(k,n)},$ $i=1 \ k=1$ where for every $1 \leq i \leq p$, $(V_{i,\cdot}^{(k,n)})_{k,n\in\mathbb{N}}$ are i.i.d. random vectors.

We consider the extension of the previous model to dimension *p*.

Define the process $(Z_n)_{n \in \mathbb{N}} \subseteq \mathbb{N}^p$ given by $Z_{n+1,j} = \sum_{n+1,j}^{p} \sum_{i=1}^{Z_{n,i}} V_{i,j}^{(k,n)},$ $i=1 \ k=1$ where for every $1 \leq i \leq p$, $(V_{i,\cdot}^{(k,n)})_{k,n\in\mathbb{N}}$ are i.i.d. random vectors.

We consider the extension of the previous model to dimension *p*.

Define the process $(Z_n)_{n \in \mathbb{N}} \subseteq \mathbb{N}^p$ given by $Z_{n+1,j} = \sum_{n=1}^{p} \sum_{i=1}^{Z_{n,i}} V_{i,i}^{(k,n)},$ $i=1 \ k=1$ where for every $1 \le i \le p$, $(V_{i,\cdot}^{(k,n)})_{k,n\in\mathbb{N}}$ are i.i.d. random vectors.

We consider the extension of the previous model to dimension *p*.

Define the process $(Z_n)_{n \in \mathbb{N}} \subseteq \mathbb{N}^p$ given by $\sum_{n,i}$ $Z_{n+1,j} =$ $\sum V_{i,i}^{(k,n)}$ $i=1 \ k=1$ where for every $1 \leq i \leq p$, $(V_{i,\cdot}^{(k,n)})_{k,n\in\mathbb{N}}$ are i.i.d. random vectors.

Branching Property

We consider the extension of the previous model to dimension *p*.

Define the process $(Z_n)_{n \in \mathbb{N}} \subseteq \mathbb{N}^p$ given by $Z_{n+1,j} = \sum_{n=1}^{p} \sum_{i=1}^{Z_{n,i}} V_{i,i}^{(k,n)}$ $i=1 \ k=1$ where for every $1 \leq i \leq p$, $(V_{i,\cdot}^{(k,n)})_{k,n\in\mathbb{N}}$ are i.i.d. random vectors.

Setting the matrix $A_{i,j} := \mathbb{E}(V_{i,j}) < +\infty$, we have that

$$Z_n \xrightarrow{n \to +\infty} 0 \Longleftrightarrow \lambda^* \le 1,$$

a.s.

where λ^* is the largest eigenvalue of A.

Branching Property

Table of Contents

I. Introduction

Asexual branching processes Single-type bisexual process II. The Model Definition Assumptions The function **M III. Results** Laws of large numbers Long time behaviour

IV. Conclusion and Perspectives

Given Z_n couples,

$$F_{n+1} = \sum_{k=1}^{Z_n} X^{(k,n)} \quad \text{and } M_{n+1} = \sum_{k=1}^{Z_n} Y^{(k,n)}$$

where $((X^{(k,n)}, Y^{(k,n)}))_{k,n\in\mathbb{N}}$ are i.i.d. random vectors. We then set

$$Z_{n+1} = \xi(F_{n+1}, M_{n+1}),$$

where ξ is the mating function

Given Z_n couples,

$$F_{n+1} = \sum_{k=1}^{Z_n} \chi^{(k,n)}$$
 and $M_{n+1} = \sum_{k=1}^{Z_n} \gamma^{(k,n)}$

where $((X^{(k,n)}, Y^{(k,n)}))_{k,n\in\mathbb{N}}$ are i.i.d. random vectors. We then set

$$Z_{n+1} = \xi(F_{n+1}, M_{n+1}),$$

where ξ is the mating function

Given Z_n couples,

$$F_{n+1} = \sum_{k=1}^{Z_n} X^{(k,n)} \quad \text{and } M_{n+1} = \sum_{k=1}^{Z_n} Y^{(k,n)}$$

where $((X^{(k,n)}, Y^{(k,n)}))_{k,n\in\mathbb{N}}$ are i.i.d. random vectors. We then set

$$Z_{n+1} = \xi(F_{n+1}, M_{n+1}),$$

where ξ is the mating function

Given Z_n couples,

$$F_{n+1} = \sum_{k=1}^{Z_n} X^{(k,n)} \quad \text{and } M_{n+1} = \sum_{k=1}^{Z_n} Y^{(k,n)}$$

where $((X^{(k,n)}, Y^{(k,n)}))_{k,n\in\mathbb{N}}$ are i.i.d. random vectors. We then set

$$Z_{n+1} = \xi(F_{n+1}, M_{n+1}),$$

where ξ is the mating function

Given Z_n couples,

$$F_{n+1} = \sum_{k=1}^{Z_n} X^{(k,n)} \quad \text{and } M_{n+1} = \sum_{k=1}^{Z_n} Y^{(k,n)}$$

where $((X^{(k,n)}, Y^{(k,n)}))_{k,n\in\mathbb{N}}$ are i.i.d. random vectors. We then set

$$Z_{n+1} = \xi(F_{n+1}, M_{n+1}),$$

where ξ is the mating function

Given Z_n couples,

$$F_{n+1} = \sum_{k=1}^{Z_n} X^{(k,n)} \quad \text{and } M_{n+1} = \sum_{k=1}^{Z_n} Y^{(k,n)}$$

where $((X^{(k,n)}, Y^{(k,n)}))_{k,n\in\mathbb{N}}$ are i.i.d. random vectors. We then set

$$Z_{n+1} = \xi(F_{n+1}, M_{n+1}),$$

where ξ is the mating function

Given Z_n couples,

$$F_{n+1} = \sum_{k=1}^{Z_n} X^{(k,n)}$$
 and $M_{n+1} = \sum_{k=1}^{Z_n} Y^{(k,n)}$

where $((X^{(k,n)}, Y^{(k,n)}))_{k,n\in\mathbb{N}}$ are i.i.d. random vectors. We then set

$$Z_{n+1} = \xi(F_{n+1}, M_{n+1}),$$

where ξ is the mating function

Given Z_n couples,

$$F_{n+1} = \sum_{k=1}^{Z_n} X^{(k,n)} \quad \text{and } M_{n+1} = \sum_{k=1}^{Z_n} Y^{(k,n)}$$

where $((X^{(k,n)}, Y^{(k,n)}))_{k,n\in\mathbb{N}}$ are i.i.d. random vectors. We then set

$$Z_{n+1} = \xi(F_{n+1}, M_{n+1}),$$

where ξ is the mating function

Mating Step

Given Z_n couples,

$$F_{n+1} = \sum_{k=1}^{Z_n} X^{(k,n)}$$
 and $M_{n+1} = \sum_{k=1}^{Z_n} Y^{(k,n)}$

where $((X^{(k,n)}, Y^{(k,n)}))_{k,n\in\mathbb{N}}$ are i.i.d. random vectors. We then set

$$Z_{n+1} = \xi(F_{n+1}, M_{n+1}),$$

where ξ is the mating function

Given Z_n couples,

$$F_{n+1} = \sum_{k=1}^{Z_n} X^{(k,n)}$$
 and $M_{n+1} = \sum_{k=1}^{Z_n} Y^{(k,n)}$

where $((X^{(k,n)}, Y^{(k,n)}))_{k,n\in\mathbb{N}}$ are i.i.d. random vectors. We then set

$$Z_{n+1} = \xi(F_{n+1}, M_{n+1}),$$

where ξ is the mating function

Perfect fidelity mating $\xi(x, y) = \min\{x, y\}$.

No branching property

Some references on bisexual processes

General results on single-type process

[Daley, '68] First definition of the bisexual Galton-Watson process (bGWp)

[Daley, Hull & Taylor, '86] Extinction condition with superadditive mating function:

 $\exists r \in [0, +\infty]$ such that $\mathbb{P}(Z_r)$

What about multi-type?

Martínez, '11] A model with two types of males and one type of female in a genetic context.

$$Z_n \to 0 \mid Z_0 = k) = 1, \forall k \in \mathbb{N} \Leftrightarrow r \leq 1.$$

- [González, Hull, Martínez & Mota '06; González, Martínez & Mote '08 & '09; Alsmeyer, Gutíerrez &

Some references on bisexual processes

General results on single-type process

[Daley, '68] First definition of the bisexual Galton-Watson process (bGWp)

[Daley, Hull & Taylor, '86] Extinction condition with superadditive mating function:

 $\exists r \in [0, +\infty]$ such that $\mathbb{P}(Z)$

What about multi-type?

Martínez, '11] A model with two types of males and one type of female in a genetic context.

$$Z_n \to 0 \mid Z_0 = k) = 1, \forall k \in \mathbb{N} \Leftrightarrow r \leq 1.$$

- [González, Hull, Martínez & Mota '06; González, Martínez & Mote '08 & '09; Alsmeyer, Gutíerrez &

Table of Contents

I. Introduction

Asexual branching processes

Single-type bisexual process

II. The Model

Definition

Assumptions

The function **M**

III. Results

Laws of large numbers

Long time behaviour

IV. Conclusion and Perspectives

Reproduction step:

$$F_{n+1,j} = \sum_{i=1}^{p} \sum_{k=1}^{Z_{n,i}} X_{i,j}^{(k,n)}$$
, and $M_{n+1,j} = \sum_{i=1}^{p} \sum_{k=1}^{Z_{n,i}} Y_{i,j}^{(k,n)}$

Reproduction step:

$$F_{n+1,j} = \sum_{i=1}^{p} \sum_{k=1}^{Z_{n,i}} X_{i,j}^{(k,n)}$$
, and $M_{n+1,j} = \sum_{i=1}^{p} \sum_{k=1}^{Z_{n,i}} Y_{i,j}^{(k,n)}$

Reproduction step:

$$F_{n+1,j} = \sum_{i=1}^{p} \sum_{k=1}^{Z_{n,i}} X_{i,j}^{(k,n)}$$
, and $M_{n+1,j} = \sum_{i=1}^{p} \sum_{k=1}^{Z_{n,i}} Y_{i,j}^{(k,n)}$

Reproduction step:

$$F_{n+1,j} = \sum_{i=1}^{p} \sum_{k=1}^{Z_{n,i}} X_{i,j}^{(k,n)}$$
, and $M_{n+1,j} = \sum_{i=1}^{p} \sum_{k=1}^{Z_{n,i}} Y_{i,j}^{(k,n)}$

Reproduction step:

$$F_{n+1,j} = \sum_{i=1}^{p} \sum_{k=1}^{Z_{n,i}} X_{i,j}^{(k,n)}$$
, and $M_{n+1,j} = \sum_{i=1}^{p} \sum_{k=1}^{Z_{n,i}} Y_{i,j}^{(k,n)}$

Mating step: $Z_{n+1} = \xi((F_{n+1,1}, \dots, F_{n+1,q_f}), (M_{n+1,1}, \dots, M_{n+1,q_m})).$

We can set $W_n = (F_n, M_n)$, and $q = q_m + q_f$.

Reproduction step:

$$F_{n+1,j} = \sum_{i=1}^{p} \sum_{k=1}^{Z_{n,i}} X_{i,j}^{(k,n)}$$
, and $M_{n+1,j} = \sum_{i=1}^{p} \sum_{k=1}^{Z_{n,i}} Y_{i,j}^{(k,n)}$

Mating step: $Z_{n+1} = \xi((F_{n+1,1}, \dots, F_{n+1,q_f}), (M_{n+1,1}, \dots, M_{n+1,q_m})).$

We can set $W_n = (F_n, M_n)$, and $q = q_m + q_{f'}$.

Single-type as exual process $p = q = 1, \ \xi(x) = x.$

Multi-type asexual process $p = q > 1, \ \xi(x) = x.$

Single-type bisexual process $p = 1, q = 2, \xi$ superadditive.

Reproduction step:

$$F_{n+1,j} = \sum_{i=1}^{p} \sum_{k=1}^{Z_{n,i}} X_{i,j}^{(k,n)}$$
, and $M_{n+1,j} = \sum_{i=1}^{p} \sum_{k=1}^{Z_{n,i}} Y_{i,j}^{(k,n)}$

Mating step: $Z_{n+1} = \xi((F_{n+1,1}, \dots, F_{n+1,q_f}), (M_{n+1,1}, \dots, M_{n+1,q_m})).$

We can set $W_n = (F_n, M_n)$, and $q = q_m + q_f$.

Single-type as exual process $p = q = 1, \ \xi(x) = x.$

Multi-type asexual process $p = q > 1, \ \xi(x) = x.$

Single-type bisexual process $p = 1, q = 2, \xi$ superadditive.

Table of Contents

I. Introduction

Asexual branching processes

Single-type bisexual process

II. The Model

Definition

Assumptions

The function **M**

III. Results

Laws of large numbers

Long time behaviour

IV. Conclusion and Perspectives

Reproduction step:

$$F_{n+1,j} = \sum_{i=1}^{p} \sum_{k=1}^{Z_{n,i}} X_{i,j}^{(k,n)}, \text{ and } M_{n+1,j} = \sum_{i=1}^{p} \sum_{k=1}^{Z_{n,i}} Y_{i,j}^{(k,n)}$$
Mating step:

$$Z_{n+1} = \xi((F_{n+1,1}, \dots, F_{n+1,q_{f}}), (M_{n+1,1}, \dots, M_{n+1,q_{m}})).$$

Assumptions on the Mating Function

- 1. We assume $\xi(0,0) = 0$. Then $\{0\}$ is an absorbing state.
- 2. We assume ξ superadditive: $\xi(x_1 + x_2, y_1 + y_2) \ge \xi(x_1, y_1) + \xi(x_2, y_2)$

1. All couples reproduce independently 2. For all $i, j, X_{i,j}$ and $Y_{i,j}$ are integrable. $\mathbb{X}_{i,i} = \mathbb{E}(X_{i,i}), \mathbb{Y}_{i,i} = \mathbb{E}(Y_{i,i})$

Reproduction step:

$$F_{n+1,j} = \sum_{i=1}^{p} \sum_{k=1}^{Z_{n,i}} X_{i,j}^{(k,n)}, \text{ and } M_{n+1,j} = \sum_{i=1}^{p} \sum_{k=1}^{Z_{n,i}} Y_{i,j}^{(k,n)}$$
Mating step:

$$Z_{n+1} = \xi((F_{n+1,1}, \dots, F_{n+1,q_f}), (M_{n+1,1}, \dots, M_{n+1,q_m})).$$

Assumptions on the Mating Function

- 1. We assume $\xi(0,0) = 0$. Then $\{0\}$ is an absorbing state.
- 2. We assume ξ superadditive: $\xi(x_1 + x_2, y_1 + y_2) \ge \xi(x_1, y_1) + \xi(x_2, y_2)$

1. All couples reproduce independently 2. For all $i, j, X_{i,j}$ and $Y_{i,j}$ are integrable. $\mathbb{X}_{i,i} = \mathbb{E}(X_{i,i}), \ \mathbb{Y}_{i,i} = \mathbb{E}(Y_{i,i})$

Reproduction step:

$$F_{n+1,j} = \sum_{i=1}^{p} \sum_{k=1}^{Z_{n,i}} X_{i,j}^{(k,n)}, \text{ and } M_{n+1,j} = \sum_{i=1}^{p} \sum_{k=1}^{Z_{n,i}} Y_{i,j}^{(k,n)}$$
Mating step:

$$Z_{n+1} = \xi((F_{n+1,1}, \dots, F_{n+1,q_f}), (M_{n+1,1}, \dots, M_{n+1,q_m}))$$

Assumptions on the Mating Function

- 1. We assume $\xi(0,0) = 0$. Then $\{0\}$ is an absorbing state.
- 2. We assume ξ superadditive: $\xi(x_1 + x_2, y_1 + y_2) \ge \xi(x_1, y_1) + \xi(x_2, y_2)$

1. All couples reproduce independently 2. For all *i*, *j*, *X*_{*i*,*j*} and *Y*_{*i*,*j*} are integrable. $X_{i,j} = \mathbb{E}(X_{i,j}), Y_{i,j} = \mathbb{E}(Y_{i,j})$

5/18

Reproduction step:

$$F_{n+1,j} = \sum_{i=1}^{p} \sum_{k=1}^{Z_{n,i}} X_{i,j}^{(k,n)}, \text{ and } M_{n+1,j} = \sum_{i=1}^{p} \sum_{k=1}^{Z_{n,i}} Y_{i,j}^{(k,n)}$$
Mating step:

$$Z_{n+1} = \xi((F_{n+1,1}, \dots, F_{n+1,q_f}), (M_{n+1,1}, \dots, M_{n+1,q_m}))$$

Assumptions on the Mating Function

- 1. We assume $\xi(0,0) = 0$. Then $\{0\}$ is an absorbing state.
- 2. We assume ξ superadditive: $\xi(x_1 + x_2, y_1 + y_2) \ge \xi(x_1, y_1) + \xi(x_2, y_2)$

Reproduction step:

$$F_{n+1,j} = \sum_{i=1}^{p} \sum_{k=1}^{Z_{n,i}} X_{i,j}^{(k,n)}, \text{ and } M_{n+1,j} = \sum_{i=1}^{p} \sum_{k=1}^{Z_{n,i}} Y_{i,j}^{(k,n)}$$
Mating step:

$$Z_{n+1} = \xi((F_{n+1,1}, \dots, F_{n+1,q_f}), (M_{n+1,1}, \dots, M_{n+1,q_m}))$$

Assumptions on the Mating Function

- 1. We assume $\xi(0,0) = 0$. Then $\{0\}$ is an absorbing state.
- 2. We assume ξ superadditive: $\xi(x_1 + x_2, y_1 + y_2) \ge \xi(x_1, y_1) + \xi(x_2, y_2)$

Assumptions on the Offspring Distribution

Reproduction step:

$$F_{n+1,j} = \sum_{i=1}^{p} \sum_{k=1}^{Z_{n,i}} X_{i,j}^{(k,n)}, \text{ and } M_{n+1,j} = \sum_{i=1}^{p} \sum_{k=1}^{Z_{n,i}} Y_{i,j}^{(k,n)}$$
Mating step:

$$Z_{n+1} = \xi((F_{n+1,1}, \dots, F_{n+1,q_f}), (M_{n+1,1}, \dots, M_{n+1,q_m}))$$

Assumptions on the Mating Function

- 1. We assume $\xi(0,0) = 0$. Then $\{0\}$ is an absorbing state.
- 2. We assume ξ superadditive: $\xi(x_1 + x_2, y_1 + y_2) \ge \xi(x_1, y_1) + \xi(x_2, y_2)$

1. All couples reproduce independently n)2. For all $i, j, X_{i,j}$ and $Y_{i,j}$ are integrable. $\mathbb{X}_{i,i} = \mathbb{E}(X_{i,i}), \ \mathbb{Y}_{i,i} = \mathbb{E}(Y_{i,i})$ $n+1,q_m'$

Assumptions on the Offspring Distribution

Reproduction step:

$$F_{n+1,j} = \sum_{i=1}^{p} \sum_{k=1}^{Z_{n,i}} X_{i,j}^{(k,n)}, \text{ and } M_{n+1,j} = \sum_{i=1}^{p} \sum_{k=1}^{Z_{n,i}} Y_{i,j}^{(k,n)}$$
Mating step:

$$Z_{n+1} = \xi((F_{n+1,1}, \dots, F_{n+1,q_f}), (M_{n+1,1}, \dots, M_{n+1,q_m})).$$

Assumptions on the Mating Function

- 1. We assume $\xi(0,0) = 0$. Then $\{0\}$ is an absorbing state.
- 2. We assume ξ superadditive:

 $\xi(x_1 + x_2, y_1 + y_2) \ge \xi(x_1, y_1) + \xi(x_2, y_2)$

Example: Multi-type perfect fidelity ($p = q_m = q_f$ $\xi((x_1, \dots, x_{q_f}), (y_1, \dots, y_{q_m})) = (\min\{x_1, y_1\}, \dots, \min\{x_{q_f}\}, \dots, \min\{x_{$

n)

1. All couples reproduce independently 2. For all $i, j, X_{i,j}$ and $Y_{i,j}$ are integrable. $\mathbb{X}_{i,i} = \mathbb{E}(X_{i,i}), \mathbb{Y}_{i,i} = \mathbb{E}(Y_{i,i})$

$$\{x_p, y_p\}).$$

5/18

Table of Contents

I. Introduction

Asexual branching processes

Single-type bisexual process

II. The Model

Definition

Assumptions

The function \mathfrak{M}

III. Results

Laws of large numbers

Long time behaviour

IV. Conclusion and Perspectives

Definition

Consider
$$\mathfrak{M} : \mathbb{R}^p_+ \longrightarrow (\mathbb{R}_+ \cup \{+\infty\})^p$$

given by:
$$\mathfrak{M}(z) = \lim_{k \to +\infty} \frac{\mathbb{E}(Z_1 \mid Z_0 = \lfloor kz \rfloor)}{k}.$$

Definition

Consider
$$\mathfrak{M} : \mathbb{R}^p_+ \longrightarrow (\mathbb{R}_+ \cup \{+\infty\})^p$$

given by:
$$\mathfrak{M}(z) = \lim_{k \to +\infty} \frac{\mathbb{E}(Z_1 \mid Z_0 = \lfloor kz \rfloor)}{k}.$$

 $\mathfrak{M}(z) = \lim_{k \to +c}$

$$\prod_{\infty} \frac{\mathbb{E}(Z_1 \mid Z_0 = \lfloor kz \rfloor)}{k}$$

 $\mathfrak{M}(z) = \lim_{k \to +c}$

$$\int_{\infty} \frac{\mathbb{E}(Z_1 \mid Z_0 = \lfloor kz \rfloor)}{k}$$

 $\mathfrak{M}(z) = \lim_{k \to +\infty}$

$$\int_{\infty} \frac{\mathbb{E}(Z_1 \mid Z_0 = \lfloor kz \rfloor)}{k}$$

 $\mathfrak{M}(z) = \lim_{k \to +\infty}$

$$\int_{\infty} \frac{\mathbb{E}(Z_1 \mid Z_0 = \lfloor kz \rfloor)}{k}$$

First Properties

 $\mathfrak{M}(z) = \lim_{k \to +\infty}$

 \mathfrak{M} is positively homogeneous: $\mathfrak{M}(\alpha z) = \alpha \mathfrak{M}(z),$ for all $\alpha > 0$ and $z \in \mathbb{R}^p_+.$ \mathfrak{M} is superadditive:

 $\mathfrak{M}(z_1+z_2) \geq \mathfrak{M}(z_1) + \mathfrak{M}(z_2).$

$$\int_{-\infty}^{\infty} \frac{\mathbb{E}(Z_1 \mid Z_0 = \lfloor kz \rfloor)}{k}$$

First Properties

 $\mathfrak{M}(z) = \lim_{z \to z} \mathbb{I}(z)$ $k \rightarrow +$

 \mathfrak{M} is positively homogeneous: $\mathfrak{M}(\alpha z) = \alpha \mathfrak{M}(z),$ for all $\alpha > 0$ and $z \in \mathbb{R}^p_+$. \mathfrak{M} is superadditive:

 $\mathfrak{M}(z_1+z_2) \geq \mathfrak{M}(z_1) + \mathfrak{M}(z_2).$

$$\int_{-\infty}^{\infty} \frac{\mathbb{E}(Z_1 \mid Z_0 = \lfloor kz \rfloor)}{k}$$

 \mathfrak{M} is a concave function:

 $\mathfrak{M}(\eta z_1 + (1 - \eta) z_2) \ge \eta \mathfrak{M}(z_1) + (1 - \eta) \mathfrak{M}(z_2),$ for all $\eta \in (0,1)$ and $z_1, z_2 \in \mathbb{R}^p_+$.

Table of Contents

I. Introduction

Asexual branching processes Single-type bisexual process II. The Model Definition Assumptions The function M

III. Results

Laws of large numbers Long time behaviour IV. Conclusion and Perspectives

LLN for large initial population

condition $Z_0(k) = kz$. Then, for all $n \in \mathbb{N}$, we have

$$\frac{Z_n(k)}{k} \xrightarrow{k \to +\infty}$$

The result also holds if we consider a random sequence of initial conditions $(z_k)_{k\in\mathbb{N}}$ with $z_k/k \rightarrow z$ a.s.

Theorem I: Assume $\mathfrak{M} < +\infty$. Consider $z \in \mathbb{N}^p$ and denote for $k \ge 1$, $(Z_n(k))_{n \in \mathbb{N}}$ the process with initial

 $\mathfrak{M}^n(z)$ a.s. and in L^1 .

LLN for large initial population

<u>Theorem I</u>: Assume $\mathfrak{M} < +\infty$. Consider $z \in \mathbb{N}^p$ and denote for $k \ge 1$, $(Z_n(k))_{n \in \mathbb{N}}$ the process with initial condition $Z_0(k) = kz$. Then, for all $n \in \mathbb{N}$, we have

$$\frac{Z_n(k)}{k} \xrightarrow{k \to +\infty}$$

 $\mathfrak{M}^n(z)$ a.s. and in L^1 .

The result also holds if we consider a random sequence of initial conditions $(z_k)_{k\in\mathbb{N}}$ with $z_k/k \rightarrow z$ a.s.

9/18

LLN for large initial population: consequences

The iterations of ${\mathfrak M}$ will play a fundamental role in the asymptotic behaviour for large population. In addition:

$$\mathfrak{M}^{n}(z) = \lim_{k \to +\infty} \frac{\mathbb{E}(Z_{n} \mid Z_{0} = \lfloor kz \rfloor)}{k} = \sup_{k \ge 1} \frac{\mathbb{E}(Z_{n} \mid Z_{0} = \lfloor kz \rfloor)}{k}$$

In particular for k = 1

 $\mathfrak{M}^n(z) \geq$

In addition, we obtain a second definition for ${\mathfrak M}$ in terms of the mating function:

 $\mathfrak{M}(z) = \lim_{k \to +\infty} \frac{\xi(kz)}{z}$

Example: For the multi-type perfect fidelity mating, we have $\mathfrak{M}(z) = (\min\{(z \mathbb{X})_1, (z \mathbb{Y})_1\}, \dots \min\{(z \mathbb{X})_p, (z \mathbb{Y})_p\}).$

$$\geq \mathbb{E}(Z_n \mid Z_0 = \lfloor z \rfloor).$$

$$\frac{zX, kzY)}{k} = \sup_{k \ge 1} \frac{\xi(kzX, kzY)}{k}$$

LLN for large initial population: consequences

The iterations of ${\mathfrak M}$ will play a fundamental role in the asymptotic behaviour for large population. In addition:

$$\mathfrak{M}^{n}(z) = \lim_{k \to +\infty} \frac{\mathbb{E}(Z_{n} \mid Z_{0} = \lfloor kz \rfloor)}{k} = \sup_{k \ge 1} \frac{\mathbb{E}(Z_{n} \mid Z_{0} = \lfloor kz \rfloor)}{k}$$

In particular for k = 1

 $\mathfrak{M}^n(z) \geq$

In addition, we obtain a second definition for ${\mathfrak M}$ in terms of the mating function:

$$\mathfrak{M}(z) = \lim_{k \to +\infty} \frac{\xi(kz \mathbb{X}, kz \mathbb{Y})}{k} = \sup_{k \ge 1} \frac{\xi(kz \mathbb{X}, kz \mathbb{Y})}{k}$$

Example: For the multi-type perfect fidelity mating, we have $\mathfrak{M}(z) = (\min\{(z \times)_1, (z \vee)_1\}, \dots, \min\{(z \times)_p, (z \vee)_p\}).$

$$\geq \mathbb{E}(Z_n \mid Z_0 = \lfloor z \rfloor).$$

LLN for large initial population: consequences

The iterations of ${\mathfrak M}$ will play a fundamental role in the asymptotic behaviour for large population. In addition:

$$\mathfrak{M}^{n}(z) = \lim_{k \to +\infty} \frac{\mathbb{E}(Z_{n} \mid Z_{0} = \lfloor kz \rfloor)}{k} = \sup_{k \ge 1} \frac{\mathbb{E}(Z_{n} \mid Z_{0} = \lfloor kz \rfloor)}{k}$$

In particular for k = 1

 $\mathfrak{M}^n(z) \geq$

In addition, we obtain a second definition for ${\mathfrak M}$ in terms of the mating function:

$$\mathfrak{M}(z) = \lim_{k \to +\infty} \frac{\xi(kz \mathbb{X}, kz \mathbb{Y})}{k} = \sup_{k \ge 1} \frac{\xi(kz \mathbb{X}, kz \mathbb{Y})}{k}$$

Example: For the multi-type perfect fidelity mating, we have $\mathfrak{M}(z) = (\min\{(z \mathbb{X})_1, (z \mathbb{Y})_1\}, \dots \min\{(z \mathbb{X})_p, (z \mathbb{Y})_p\}).$

$$\geq \mathbb{E}(Z_n \mid Z_0 = \lfloor z \rfloor).$$

Concave Perron-Frobenius theory

 $z \in \mathbb{R}^p_+, \mathfrak{M}^n(z) > 0.$

Theorem [Krause, 1994]: If $\mathfrak{M}: \mathbb{R}^p_+ \longrightarrow \mathbb{R}^p_+$ is a concave, positively homogeneous and primitive function, then the problem $\mathfrak{M}(z) = \lambda z$ has a unique solution $\lambda^* > 0$ and $z^* > 0$, $||z^*|| = 1$. There exists a function $\mathscr{P}: \mathbb{R}^p_+ \longrightarrow \mathbb{R}_+$ such that lim -

 $k \rightarrow +\infty$

We suppose that \mathfrak{M} is a **primitive** function. That is, there exists $n_0 \in \mathbb{N}$ such that for all $n \ge n_0$, and all

$$\frac{\mathfrak{M}^n(z)}{(\lambda^*)^n} = \mathscr{P}(z)z^*$$

Theorem II: Assume $\mathfrak{M} < +\infty$ and that $\lambda^* > 1$. T exists r > 0 such that if ||z|| > r, $\mathbb{P}\left(Z_{n_0} \neq 0 \text{ et } \forall n \ge n_0, Z_{n+1} \in [(1 - 1)^{-1}]\right)$

$$(\varepsilon)\mathfrak{M}(Z_n), (1+\varepsilon)\mathfrak{M}(Z_n)] \mid Z_0 = z \ge 1 - \eta.$$

Theorem II: Assume $\mathfrak{M} < +\infty$ and that $\lambda^* > 1$. T exists r > 0 such that if ||z|| > r, $\mathbb{P}\left(Z_{n_0} \neq 0 \text{ et } \forall n \ge n_0, Z_{n+1} \in [(1 - 1)]\right)$

$$(\varepsilon)\mathfrak{M}(Z_n), (1+\varepsilon)\mathfrak{M}(Z_n)] \mid Z_0 = z \ge 1 - \eta.$$

Theorem II: Assume $\mathfrak{M} < +\infty$ and that $\lambda^* > 1$. T exists r > 0 such that if ||z|| > r, $\mathbb{P}\left(Z_{n_0} \neq 0 \text{ et } \forall n \ge n_0, Z_{n+1} \in [(1 - 1)^{-1}]\right)$

$$(\varepsilon)\mathfrak{M}(Z_n), (1+\varepsilon)\mathfrak{M}(Z_n)] \mid Z_0 = z \ge 1 - \eta.$$

exists r > 0 such that if ||z|| > r, $\mathbb{P}\left(Z_{n_0} \neq 0 \text{ et } \forall n \ge n_0, Z_{n+1} \in [(1 - 1)]\right)$

<u>Theorem II</u>: Assume $\mathfrak{M} < +\infty$ and that $\lambda^* > 1$. There exists $n_0 \in \mathbb{N}$, such that for all $\varepsilon, \eta \in (0,1)$, there

$$\varepsilon \mathfrak{M}(Z_n), (1+\varepsilon)\mathfrak{M}(Z_n)] \mid Z_0 = z \right) \ge 1 - \eta.$$

12/18

exists r > 0 such that if ||z|| > r, $\mathbb{P}\left(Z_{n_0} \neq 0 \text{ et } \forall n \ge n_0, Z_{n+1} \in [(1 - 1)]\right)$

$$\varepsilon \mathfrak{M}(Z_n), (1+\varepsilon)\mathfrak{M}(Z_n)] \mid Z_0 = z \right) \ge 1 - \eta.$$

exists r > 0 such that if ||z|| > r, $\mathbb{P}\left(Z_{n_0} \neq 0 \text{ et } \forall n \ge n_0, Z_{n+1} \in [(1 - 1)]\right)$

$$\varepsilon \mathfrak{S}\mathfrak{M}(Z_n), (1+\varepsilon)\mathfrak{M}(Z_n)] \mid Z_0 = z \right) \ge 1 - \eta.$$

Theorem II: Assume $\mathfrak{M} < +\infty$ and that $\lambda^* > 1$. The exists r > 0 such that if ||z|| > r, $\mathbb{P}\left(Z_{n_0} \neq 0 \text{ et } \forall n \ge n_0, Z_{n+1} \in [(1 - 1)^{-1}]\right)$

Theorem II: Assume $\mathfrak{M} < +\infty$ and that $\lambda^* > 1$. There exists $n_0 \in \mathbb{N}$, such that for all $\varepsilon, \eta \in (0,1)$, there

$$-\varepsilon \mathfrak{M}(Z_n), (1+\varepsilon)\mathfrak{M}(Z_n)] \mid Z_0 = z \ge 1 - \eta.$$

$$(Z_{n_0+1}).$$

$$Z_{n_0+1}$$

12/18

Theorem II: Assume $\mathfrak{M} < +\infty$ and that $\lambda^* > 1$. The exists r > 0 such that if ||z|| > r, $\mathbb{P}\left(Z_{n_0} \neq 0 \text{ et } \forall n \ge n_0, Z_{n+1} \in [(1 - 1)^{-1}]\right)$

$$-\varepsilon \mathfrak{M}(Z_n), (1+\varepsilon)\mathfrak{M}(Z_n)] \mid Z_0 = z \ge 1 - \eta.$$

 $-Z_{n_0+1}$

Theorem II: Assume $\mathfrak{M} < +\infty$ and that $\lambda^* > 1$. T exists r > 0 such that if ||z|| > r, $\mathbb{P}\left(Z_{n_0} \neq 0 \text{ et } \forall n \ge n_0, Z_{n+1} \in [(1 - 1)]\right)$

$$(\varepsilon)\mathfrak{M}(Z_n), (1+\varepsilon)\mathfrak{M}(Z_n)] \mid Z_0 = z \ge 1 - \eta.$$

exists r > 0 such that if ||z|| > r, $\mathbb{P}\left(Z_{n_0} \neq 0 \text{ et } \forall n \ge n_0, Z_{n+1} \in [(1 - 1)]\right)$

$$-\varepsilon \mathfrak{M}(Z_n), (1+\varepsilon)\mathfrak{M}(Z_n)] \mid Z_0 = z \ge 1 - \eta.$$

<u>Theorem II</u>: Assume $\mathfrak{M} < +\infty$ and that $\lambda^* > 1$. There exists $n_0 \in \mathbb{N}$, such that for all $\varepsilon, \eta \in (0,1)$, there exists r > 0 such that if ||z|| > r, $\mathbb{P}\left(Z_{n_0} \neq 0 \text{ et } \forall n \ge n_0, Z_{n+1} \in \left[(1-\varepsilon)\mathfrak{M}(Z_n), (1+\varepsilon)\mathfrak{M}(Z_n)\right] \mid Z_0 = z\right) \ge 1-\eta.$

Theorem II: Assume $\mathfrak{M} < +\infty$ and that $\lambda^* > 1$. The exists r > 0 such that if ||z|| > r, $\mathbb{P}\left(Z_{n_0} \neq 0 \text{ et } \forall n \ge n_0, Z_{n+1} \in [(1 - 1)^{-1}]\right)$

$$-\varepsilon \mathfrak{M}(Z_n), (1+\varepsilon)\mathfrak{M}(Z_n)] \mid Z_0 = z \ge 1 - \eta.$$

exists r > 0 such that if ||z|| > r, $\mathbb{P}\left(Z_{n_0} \neq 0 \text{ et } \forall n \ge n_0, Z_{n+1} \in \left[(1-\varepsilon)\mathfrak{M}(Z_n), (1+\varepsilon)\mathfrak{M}(Z_n)\right] \mid Z_0 = z\right) \ge 1-\eta.$

(0,0)

exists r > 0 such that if ||z|| > r, $\mathbb{P}\left(Z_{n_0} \neq 0 \text{ et } \forall n \ge n_0, Z_{n+1} \in \left[(1-\varepsilon)\mathfrak{M}(Z_n), (1+\varepsilon)\mathfrak{M}(Z_n)\right] \mid Z_0 = z\right) \ge 1-\eta.$

Theorem II: Assume $\mathfrak{M} < +\infty$ and that $\lambda^* > 1$. There exists $n_0 \in \mathbb{N}$, such that for all $\varepsilon, \eta \in (0,1)$, there exists r > 0 such that if ||z|| > r, $\mathbb{P}\left(Z_{n_0} \neq 0 \text{ et } \forall n \ge n_0, Z_{n+1} \in \left[(1-\varepsilon)\mathfrak{M}(Z_n), (1+\varepsilon)\mathfrak{M}(Z_n)\right] \mid Z_0 = z\right) \ge 1-\eta.$

With high probability $(1-\varepsilon)\mathfrak{M}(Z_n) \le Z_{n+1} \le (1+\varepsilon)\mathfrak{M}(Z_n).$

Theorem II: Assume $\mathfrak{M} < +\infty$ and that $\lambda^* > 1$. There exists $n_0 \in \mathbb{N}$, such that for all $\varepsilon, \eta \in (0,1)$, there exists r > 0 such that if ||z|| > r, $\mathbb{P}\left(Z_{n_0} \neq 0 \text{ et } \forall n \ge n_0, Z_{n+1} \in \left[(1-\varepsilon)\mathfrak{M}(Z_n), (1+\varepsilon)\mathfrak{M}(Z_n)\right] \mid Z_0 = z\right) \ge 1-\eta.$

With high probability $(1-\varepsilon)^m \mathfrak{M}^m(Z_n) \le Z_{n+m} \le (1+\varepsilon)^m \mathfrak{M}^m(Z_n).$

<u>Theorem II</u>: Assume $\mathfrak{M} < +\infty$ and that $\lambda^* > 1$. There exists $n_0 \in \mathbb{N}$, such that for all $\varepsilon, \eta \in (0,1)$, there exists r > 0 such that if ||z|| > r, $\mathbb{P}\left(Z_{n_0} \neq 0 \text{ et } \forall n \ge n_0, Z_{n+1} \in \left[(1-\varepsilon)\mathfrak{M}(Z_n), (1+\varepsilon)\mathfrak{M}(Z_n)\right] \mid Z_0 = z\right) \ge 1-\eta.$

With high probability $(1-\varepsilon)^m \mathfrak{M}^m(Z_n) \le Z_{n+m} \le (1+\varepsilon)^m \mathfrak{M}^m(Z_n).$

Positive probability of survival in the case where $\lambda^* > 1$.

exists r > 0 such that if ||z|| > r, $\mathbb{P}\left(Z_{n_0} \neq 0 \text{ et } \forall n \ge n_0, Z_{n+1} \in [(1 - 1)]\right)$

> With high probability $(1-\varepsilon)^m \mathfrak{M}^m(Z_n) \le Z_{n+m} \le (1+\varepsilon)^m \mathfrak{M}^m(Z_n).$

Positive probability of survival in the case where $\lambda^* > 1$.

Theorem II: Assume $\mathfrak{M} < +\infty$ and that $\lambda^* > 1$. There exists $n_0 \in \mathbb{N}$, such that for all $\varepsilon, \eta \in (0,1)$, there

$$\varepsilon \mathfrak{M}(Z_n), (1+\varepsilon)\mathfrak{M}(Z_n)] \mid Z_0 = z \right) \ge 1 - \eta.$$

In addition, under the event of non-extinction $\{Z_n \neq 0, \forall n \in \mathbb{N}\}$ we have \mathbb{P}_{τ} -a.s.

$$\lim_{n \to +\infty} \frac{Z_n}{\|Z_n\|} = z^*.$$
Table of Contents

I. Introduction

Asexual branching processes Single-type bisexual process II. The Model Definition Assumptions The function M

III. Results

Laws of large numbers

Long time behaviour

IV. Conclusion and Perspectives

Extinction condition

We suppose
$$(Z_n)_{n \in \mathbb{N}}$$
 is transient. Then $\mathbb{P}\left(\lim_{n \to +\infty} \|Z_n\| \in \{0 + \infty\}\right) = 1$.

We define the probability of extinction $q_z = \mathbb{P}(Z)$

Theorem III: Assume \mathfrak{M} is finite. Then,

 $\lambda^* \leq 1$

If $\lambda^* > 1$ or if there exists $z' \in \mathbb{R}^p_+$ such that $\mathfrak{M}(z')$ is not finite, then there exists r > 0 such that $q_v < 1$ for all $v \in \mathbb{N}^p$ with $||v|| \ge r$.

$$Z_n \xrightarrow{n \to +\infty} 0 \mid Z_0 = z)$$

$$\Leftrightarrow q_z = 1, \, \forall z \in \mathbb{N}^p$$

Asymptotic profile

Recall that we have

$$F_{n+1,j} = \sum_{i=1}^{p} \sum_{k=1}^{Z_{n,i}} X_{i,j}^{(k,n)}$$

and the matrices

 $\mathbb{X}_{i,i} = \mathbb{E}(X)$

<u>Theorem IV</u>: Assume \mathfrak{M} is finite. For all $z \in \mathbb{N}^p$ there exists a non-negative random variable \mathscr{C} such that $\frac{Z_n}{(\lambda^*)^n} \xrightarrow{n \to +\infty} \mathscr{C}z^*, \ \frac{F_n}{(\lambda^*)^{n-1}} \xrightarrow{n \to +\infty} \mathscr{C}z^* \mathbb{X}, \ \frac{M_n}{(\lambda^*)^{n-1}} \xrightarrow{n \to +\infty} \mathscr{C}z^* \mathbb{Y},$ $\mathbb{P}(\cdot \mid Z_0 = z) - a.s.$

and
$$M_{n+1,j} = \sum_{i=1}^{p} \sum_{k=1}^{Z_{n,i}} Y_{i,j}^{(k,n)}$$
,

$$X_{i,j}$$
), $\mathbb{Y}_{i,j} = \mathbb{E}(Y_{i,j})$

If in addition \mathscr{C} is non-degenerate at 0 for some $z \in \mathbb{N}^p$, then up to a $\mathbb{P}(\cdot \mid Z_0 = z)$ -negligible event, $\{\mathscr{C}=0\}=\{\exists n\in\mathbb{N},Z_n=0\}.$

L^1 Convergence under a VlogV- condition

$$\frac{\mathbb{E}(Y_{i,j} \log Y_{i,j}) < +\infty \text{ for all } i, j, \text{ and that}}{\frac{(z)}{z}} \le C |z|^{-\alpha}, \forall z \in \mathbb{N}^p,$$

for some $C, \alpha > 0$. Then the convergence in **Theorem IV** holds in L^1 and the random variable \mathscr{C} is non-

Table of Contents

I. Introduction

Asexual branching processes Single-type bisexual process II. The Model Definition Assumptions The function **M III. Results** Laws of large numbers

Long time behaviour

IV. Conclusion and Perspectives

Conclusions

- We studied a population model with superadditive mating and different types, achieving:

- Two LLN in large population.
- Sufficient and necessary condition for extinction.
- Sufficient condition for exponential growth in the supercritical case.
- Existence of a continuum of QSDs in the subcritical case.
- We studied some particular cases of:
 - Continuous time two-sex birth and death process.
 - Models with random mating.

Perspectives

- Methods to approximate λ^* and z^* need to be developed (work with D. Villemonais and J. Corujo).

- Continuous time versions of the model (work with E. Horton).

- Model with a continuum of traits (work S. Méléard and A. Véber)

- Different models with non-superadditive mating. Models that consider competition of individuals

- Study existence of QSDs in the critical case.

The multi-type bisexual Galton-Watson process

Nicolás Zalduendo, INRAE Montpellier

Work in collaboration with Coralie Fritsch (Inria Nancy) and Denis Villemonais (U. de Strasbourg)

Besançon Meeting on Probability, Ecology & Evolution - December, 2024

Existence of QSDs

We suppose that \mathfrak{M} is finite and that $\lambda^* < 1$.

We are interested in the existence of probability measures ν over $\mathbb{N}^p \setminus \{0\}$ such that

The exponential absorption parameter is $\theta \in [0,1]$ such that

 $\mathbb{P}_{\nu}(Z_n \in \cdot \mid Z_n \neq 0) = \nu(\cdot).$

 $\mathbb{P}_{\nu}(Z_n \neq 0) = \theta^n.$

Existence of QSDs

We suppose that \mathfrak{M} is finite and that $\lambda^* < 1$.

- We are interested in the existence of probability measures ν over $\mathbb{N}^p \setminus \{0\}$ such that
- The exponential absorption parameter is $\theta \in [0,1]$ such that
 - 1. Existence of a continuum of QSDs.
 - 2. Existence of a finite number of QSDs under a moment hypothesis.
 - 3. Existence of a unique QSD under irreducibility assumption.

 $\mathbb{P}_{\nu}(Z_n \in \cdot \mid Z_n \neq 0) = \nu(\cdot).$

 $\mathbb{P}_{\nu}(Z_n \neq 0) = \theta^n.$

Existence of a Continuum of QSDs

for any $\theta \in (\lambda^*, 1)$, there exists a quasi-stationary distribution ν_{θ} with absorption parameter θ .

A general result is proven for sub-Markovian kernels. Then applied for the kernel $K(x, dy) = \mathbb{P}_{x}(Z_{1} \in dy, Z_{1} \neq 0).$

Theorem V: The process $(Z_n)_{n \in \mathbb{N}}$ admits an infinite set of quasi-stationary distributions. More precisely,

Existence of finitely many QSDs

We define

$$\theta_0 = \sup_{z \in \mathbb{N}^p \setminus \{0\}} \sup \left\{ \theta > 0, \liminf_{n \to +\infty} \theta^{-n} \mathbb{P}_z(Z_n \neq 0) > 0 \right\}.$$

We assume there exists $\eta > 1$ s.t. $(\lambda^*)^{\eta} < \theta_0$ and that $\mathbb{E}(X_{i,j}^{\eta}) < +\infty$, $\mathbb{E}(Y_{i,j}^{\eta}) < +\infty$ for all i, j.

Existence of finitely many QSDs We define

$$\theta_0 = \sup_{z \in \mathbb{N}^p \setminus \{0\}} \sup \left\{ \theta > 0, \liminf_{n \to +\infty} \theta^{-n} \mathbb{P}_z(Z_n \neq 0) > 0 \right\}.$$

We assume there exists $\eta > 1$ s.t. $(\lambda^*)^{\eta} < \theta_0$ and that $\mathbb{E}(X_{i,j}^{\eta}) < +\infty$, $\mathbb{E}(Y_{i,j}^{\eta}) < +\infty$ for all i, j.

Theorem VI: We assume $(Z_n)_{n \in \mathbb{N}}$ aperiodic and fix $a \in (1,\eta)$. There exist ν_1, \dots, ν_{ℓ} QSDs with $v_i(\mathscr{P}^a) < +\infty$ and absorption parameter θ_0 such that for all $f \leq \mathscr{P}^a$,

$$\left| \theta_0^{-n} n^{-j(z)} \mathbb{E}_z(f(Z_n) \mathbb{1}_{Z_n \neq 0}) - \sum_{i=1}^{\ell} \eta_i(z) \nu_i(f) \right| \leq \alpha_n \mathscr{P}(z)^{a_i}$$

with $\alpha_n \to 0$, *j* and η_i functions s.t. $\eta_i \leq K \mathscr{P}^a$ for some K > 0.

21/18

Existence of finitely many QSDs We define

$$\theta_0 = \sup_{z \in \mathbb{N}^p \setminus \{0\}} \sup \left\{ \theta > 0, \liminf_{n \to +\infty} \theta^{-n} \mathbb{P}_z(Z_n \neq 0) > 0 \right\}.$$

We assume there exists $\eta > 1$ s.t. $(\lambda^*)^{\eta} < \theta_0$ and that $\mathbb{E}(X_{i,j}^{\eta}) < +\infty$, $\mathbb{E}(Y_{i,j}^{\eta}) < +\infty$ for all i, j.

Theorem VI: We assume $(Z_n)_{n \in \mathbb{N}}$ aperiodic and fix $a \in (1,\eta)$. There exist $\nu_1, \ldots, \nu_{\ell}$ QSDs with $v_i(\mathscr{P}^a) < +\infty$ and absorption parameter θ_0 such that for all $f \leq \mathscr{P}^a$,

$$\left| \theta_0^{-n} n^{-j(z)} \mathbb{E}_z(f(Z_n) \mathbb{1}_{Z_n \neq 0}) - \sum_{i=1}^{\ell} \eta_i(z) \nu_i(f) \right| \leq \alpha_n \mathscr{P}(z)^a,$$

with $\alpha_n \to 0$, *j* and η_i functions s.t. $\eta_i \leq K \mathscr{P}^a$ for some K > 0.

Theorem VII: In addition, if $(Z_n)_{n \in \mathbb{N}}$ is irreducible, there exists a unique QSD ν_{QSD} with $\nu_{QSD}(\mathscr{P}^a) < +\infty$ and absorption parameter θ_0 such that for all measure $\mu(\mathscr{P}^a) < +\infty$ and $|f| \leq \mathscr{P}^a$. $|\mathbb{E}_{\mu}(f(Z_n) | Z_n \neq 0) - \nu_{QSD}(f)| \leq C\gamma^n \mu(\mathscr{P}^a).$

with $\gamma \in (0,1)$.

The multi-type bisexual Galton-Watson process

Nicolás Zalduendo, INRAE Montpellier

Work in collaboration with Coralie Fritsch (Inria Nancy) and Denis Villemonais (U. de Strasbourg)

Besançon Meeting on Probability, Ecology & Evolution - December, 2024

