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Definition

Consider ￼  
given by: 

￼ .

𝔐 : ℝp
+ ⟶ (ℝ+ ∪ {+∞})p

𝔐(z) = lim
k→+∞

𝔼(Z1 ∣ Z0 = ⌊kz⌋)
k

ℝ2
+

z

(0,0)
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Examples

Single-type 

Multi-type 

Asexual Bisexual 

￼  

with ￼  the expected offspring.

𝔐(z) = mz

m = 𝔼(V )

￼  

where ￼  is the mean growth rate of the process.

𝔐(z) = rz

r

￼𝔐(z) = lim
k→+∞

𝔼(Z1 ∣ Z0 = ⌊kz⌋)
k

 ￼  

with ￼  the matrix of expected offspring. 

𝔐(z) = Az

Ai,j = 𝔼(Vi,j)
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Examples
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Multi-type 
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￼  

with ￼  the expected offspring.
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Not necessarily linear 
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￼  is positively homogeneous: 
￼ , 

for all ￼  and ￼ .

𝔐
𝔐(αz) = α𝔐(z)

α > 0 z ∈ ℝp
+

￼  is superadditive: 
￼ .

𝔐
𝔐(z1 + z2) ≥ 𝔐(z1) + 𝔐(z2)

First Properties

￼𝔐(z) = lim
k→+∞

𝔼(Z1 ∣ Z0 = ⌊kz⌋)
k
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￼ . Consider ￼  and denote for ￼ , ￼  the process with initial 
condition ￼ . Then, for all ￼ , we have 

￼    

The result also holds if we consider a random sequence of initial conditions ￼  with ￼  a.s.

𝔐 < + ∞ z ∈ ℕp k ≥ 1 (Zn(k))n∈ℕ
Z0(k) = kz n ∈ ℕ

Zn(k)
k

k→+∞ 𝔐n(z) a.s. and in L1 .

(zk)k∈ℕ zk /k → z
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LLN for large initial population

Theorem I: Assume ￼ . Consider ￼  and denote for ￼ , ￼  the process with initial 
condition ￼ . Then, for all ￼ , we have 

￼    

The result also holds if we consider a random sequence of initial conditions ￼  with ￼  a.s.

𝔐 < + ∞ z ∈ ℕp k ≥ 1 (Zn(k))n∈ℕ
Z0(k) = kz n ∈ ℕ

Zn(k)
k

k→+∞ 𝔐n(z) a.s. and in L1 .

(zk)k∈ℕ zk /k → z

￼n = 5, k = 5 ￼n = 5, k = 50 ￼n = 5, k = 500

9/18



LLN for large initial population: consequences
The iterations of ￼  will play a fundamental role in the asymptotic behaviour for large population. In 
addition: 

￼  

In particular for ￼  
￼

𝔐

𝔐n(z) = lim
k→+∞

𝔼(Zn ∣ Z0 = ⌊kz⌋)
k

= sup
k≥1

𝔼(Zn ∣ Z0 = ⌊kz⌋)
k

.

k = 1
𝔐n(z) ≥ 𝔼(Zn ∣ Z0 = ⌊z⌋) .

Example: For the multi-type perfect fi
￼𝔐  𝕏 𝕐   𝕏 𝕐 

fi￼

￼

𝔐
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𝕏 𝕐
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In particular for ￼  
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= sup
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𝔼(Zn ∣ Z0 = ⌊kz⌋)
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.

k = 1
𝔐n(z) ≥ 𝔼(Zn ∣ Z0 = ⌊z⌋) .

In addition, we obtain a second definition for ￼  in terms of the mating function: 

￼  

𝔐

𝔐(z) = lim
k→+∞

ξ(kz𝕏, kz𝕐 )
k

= sup
k≥1

ξ(kz𝕏, kz𝕐 )
k

Example: For the multi-type perfect fi
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𝔼(Zn ∣ Z0 = ⌊kz⌋)
k

= sup
k≥1

𝔼(Zn ∣ Z0 = ⌊kz⌋)
k

.

k = 1
𝔐n(z) ≥ 𝔼(Zn ∣ Z0 = ⌊z⌋) .

Example: For the multi-type perfect fidelity mating, we have 
￼𝔐(z) = (min{(z𝕏)1, (z𝕐 )1}, … min{(z𝕏)p, (z𝕐 )p}) .

In addition, we obtain a second definition for ￼  in terms of the mating function: 

￼  

𝔐

𝔐(z) = lim
k→+∞

ξ(kz𝕏, kz𝕐 )
k

= sup
k≥1

ξ(kz𝕏, kz𝕐 )
k
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Concave Perron-Frobenius theory

Theorem [Krause, 1994]: If ￼  is a concave, positively homogeneous and primitive 
function, then the problem ￼  has a unique solution ￼  and ￼  
There exists a function ￼  such that 

￼  

𝔐 : ℝp
+ ⟶ ℝp

+
𝔐(z) = λz λ* > 0 z* > 0, ∥z*∥ = 1.

𝒫 : ℝp
+ ⟶ ℝ+

lim
k→+∞

𝔐n(z)
(λ*)n

= 𝒫(z)z*

We suppose that ￼  is a primitive function. That is, there exists ￼  such that for all ￼ , and all 
￼ , ￼

𝔐 n0 ∈ ℕ n ≥ n0
z ∈ ℝp

+ 𝔐n(z) > 0.
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LLN for the complete trajectory 

Theorem II: Assume ￼  and that ￼ . There exists ￼ , such that for all ￼ , there 
exists ￼  such that if ￼ , 

￼  

𝔐 < + ∞ λ* > 1 n0 ∈ ℕ ε, η ∈ (0,1)
r > 0 ∥z∥ > r

ℙ (Zn0
≠ 0 et ∀n ≥ n0, Zn+1 ∈ [(1 − ε)𝔐(Zn), (1 + ε)𝔐(Zn)] ∣ Z0 = z) ≥ 1 − η .
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fine the probability of extinction 
￼qz = ℙ(Zn

n→+∞ 0 ∣ Z0 = z)

Theorem III: Assume ￼  is finite. Then, 

￼  

If ￼  or if there exists ￼  such that ￼  is not finite, then there exists ￼  such that ￼  for 
all ￼  with ￼ .

𝔐

λ* ≤ 1 ⇔ qz = 1, ∀z ∈ ℕp

λ* > 1 z′￼∈ ℝp
+ 𝔐(z′￼) r > 0 qv < 1

v ∈ ℕp ∥v∥ ≥ r

Extinction condition

We suppose ￼ . is transient. Then ￼ .(Zn)n∈ℕ ℙ ( lim
n→+∞

∥Zn∥ ∈ {0 + ∞}) = 1
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Recall that we have 

￼  

and the matrices  
￼

Fn+1,j =
p

∑
i=1

Zn,i

∑
k=1

X(k,n)
i,j and Mn+1,j =

p

∑
i=1

Zn,i

∑
k=1

Y(k,n)
i,j ,

𝕏i,j = 𝔼(Xi,j), 𝕐i,j = 𝔼(Yi,j)

Theorem IV: Assume ￼  is finite. For all ￼  there exists a non-negative random variable ￼  such that  

￼  

￼ a.s. 

If in addition ￼  is non-degenerate at ￼  for some ￼ , then up to a ￼ negligible event, 
￼

𝔐 z ∈ ℕp 𝒞
Zn

(λ*)n
n→+∞ 𝒞z*,

Fn

(λ*)n−1
n→+∞ 𝒞z*𝕏,

Mn

(λ*)n−1
n→+∞ 𝒞z*𝕐,

ℙ( ⋅ ∣ Z0 = z)−

𝒞 0 z ∈ ℕp ℙ( ⋅ ∣ Z0 = z)−
{𝒞 = 0} = {∃n ∈ ℕ, Zn = 0} .

Asymptotic profile
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Proposition I: Assume that ￼ , ￼  for all ￼ , and that 

￼  

for some ￼ . Then the convergence in Theorem IV holds in ￼  and the random variable ￼  is non-
degenerate at ￼ . 

𝔼(Xi,j log Xi,j) < + ∞ 𝔼(Yi,j log Yi,j) < + ∞ i, j
ξ(z𝕏, z𝕐 )

|z |
−

𝔐(z)
|z |

≤ C |z |−α , ∀z ∈ ℕp,

C, α > 0 L1 𝒞
0

￼  Convergence under a ￼ conditionL1 VlogV−
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I. Introduction

II. The Model

III. Results

Asexual branching processes

Single-type bisexual process

Definition

Assumptions

The function ￼𝔐
















ficient and necessary condition for extinction.

• Sufficient condition for exponential growth in the supercritical case.

• Existence of a continuum of QSDs in the subcritical case.

- We studied some particular cases of:

• Models with random mating.

• Continuous time two-sex birth and death process.
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Perspectives

- Different models with non-superadditive mating. Models that consider competition of individuals 

- Study existence of QSDs in the critical case.

- Methods to approximate ￼  and ￼  need to be developed (work with D. Villemonais and J. Corujo).λ* z*

- Continuous time versions of the model (work with E. Horton).

- Model with a continuum of traits (work S. Méléard and A. Véber)
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We suppose that ￼  is finite and that ￼ .𝔐 λ* < 1

We are interested in the existence of probability measures ￼  over ￼  such that 
￼ .

ν ℕp∖{0}
ℙν(Zn ∈ ⋅ ∣ Zn ≠ 0) = ν( ⋅ )

Existence of QSDs

The exponential absorption parameter is ￼  such that 
 ￼ .

θ ∈ [0,1]
ℙν(Zn ≠ 0) = θn
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We suppose that ￼  is finite and that ￼ .𝔐 λ* < 1

We are interested in the existence of probability measures ￼  over ￼  such that 
￼ .

ν ℕp∖{0}
ℙν(Zn ∈ ⋅ ∣ Zn ≠ 0) = ν( ⋅ )

Existence of QSDs

1. Existence of a continuum of QSDs. 
2. Existence of a finite number of QSDs under a moment hypothesis. 
3. Existence of a unique QSD under irreducibility assumption.

The exponential absorption parameter is ￼  such that 
 ￼ .

θ ∈ [0,1]
ℙν(Zn ≠ 0) = θn
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Theorem V: The process ￼  admits an infinite set of quasi-stationary distributions. More precisely, 
for any ￼ , there exists a quasi-stationary distribution ￼  with absorption parameter ￼ .

(Zn)n∈ℕ
θ ∈ (λ*,1) νθ θ

Existence of a Continuum of QSDs

A general result is proven for sub-Markovian kernels. Then applied for the kernel 
￼  K(x, dy) = ℙx(Z1 ∈ dy, Z1 ≠ 0) .
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We assume there exists ￼  s.t. ￼  and that ￼  for all ￼ .η > 1 (λ*)η < θ0 𝔼(Xη
i,j) < + ∞, 𝔼(Yη

i,j) < + ∞ i, j

Existence of finitely many QSDs
We define 

￼θ0 = sup
z∈ℕp∖{0}

sup {θ > 0, lim inf
n→+∞

θ−nℙz(Zn ≠ 0) > 0} .
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We assume there exists ￼  s.t. ￼  and that ￼  for all ￼ .η > 1 (λ*)η < θ0 𝔼(Xη
i,j) < + ∞, 𝔼(Yη

i,j) < + ∞ i, j

Existence of finitely many QSDs
We define 

￼θ0 = sup
z∈ℕp∖{0}

sup {θ > 0, lim inf
n→+∞

θ−nℙz(Zn ≠ 0) > 0} .

Theorem VI: We assume ￼  aperiodic and fix ￼ . There exist ￼  QSDs with ￼  
and absorption parameter ￼  such that for all ￼ , 

￼ , 

with ￼  functions s.t.  ￼  for some ￼

(Zn)n∈ℕ a ∈ (1,η) ν1, …, νℓ vi(𝒫a) < + ∞
θ0 f ≤ 𝒫a

θ−n
0 n−j(z)𝔼z( f(Zn)1Zn≠0) −

ℓ

∑
i=1

ηi(z)νi( f ) ≤ αn𝒫(z)a

αn → 0, j and ηi ηi ≤ K𝒫a K > 0.
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We assume there exists ￼  s.t. ￼  and that ￼  for all ￼ .η > 1 (λ*)η < θ0 𝔼(Xη
i,j) < + ∞, 𝔼(Yη

i,j) < + ∞ i, j

Existence of finitely many QSDs
We define 

￼θ0 = sup
z∈ℕp∖{0}

sup {θ > 0, lim inf
n→+∞

θ−nℙz(Zn ≠ 0) > 0} .

Theorem VI: We assume ￼  aperiodic and fix ￼ . There exist ￼  QSDs with ￼  
and absorption parameter ￼  such that for all ￼ , 

￼ , 

with ￼  functions s.t.  ￼  for some ￼

(Zn)n∈ℕ a ∈ (1,η) ν1, …, νℓ vi(𝒫a) < + ∞
θ0 f ≤ 𝒫a

θ−n
0 n−j(z)𝔼z( f(Zn)1Zn≠0) −

ℓ

∑
i=1

ηi(z)νi( f ) ≤ αn𝒫(z)a

αn → 0, j and ηi ηi ≤ K𝒫a K > 0.

Theorem VII: In addition, if ￼  is irreducible, there exists a unique QSD ￼  with ￼  and 
absorption parameter ￼  such that for all measure ￼  and ￼ . 

￼ . 
with ￼ . 

(Zn)n∈ℕ νQSD vQSD(𝒫a) < + ∞
θ0 μ(𝒫a) < + ∞ | f | ≤ 𝒫a

|𝔼μ( f(Zn) ∣ Zn ≠ 0) − νQSD( f ) | ≤ Cγnμ(𝒫a)
γ ∈ (0,1)
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