The Multi-Type bisexual Galton-Watson branching process

Nicolás Zalduendo Vidal

Joint work with Coralie Fritsch and Denis Villemonais
École de recherche de la Chaire MMB
June 15, 2021

(1) Motivation

- The Galton-Watson process
- The Multi-Type Galton-Watson process
- The bisexual Galton-Watson process

(2) The Multi-Type bGWbp

The Galton-Watson process

$$
Z_{0}=3
$$

The Galton-Watson process

$$
\begin{aligned}
& Z_{0}=3 \\
& Z_{1}=6
\end{aligned}
$$

The Galton-Watson process

The Galton-Watson process

Very important property: INDEPENDENCE!

The Galton-Watson process

Very important property: INDEPENDENCE!

$$
m:=\mathbb{E}\left(Z_{1} \mid Z_{0}=1\right) \leq 1 \Longleftrightarrow Z_{n} \rightarrow 0 \text { a.s. }
$$

The Multi-Type Galton Watson process

We now consider a process with types:

The Multi-Type Galton Watson process

We now consider a process with types:

$$
Z_{0}=(1,1,1)
$$

The Multi-Type Galton Watson process

We now consider a process with types:

$$
Z_{0}=(1,1,1)
$$

$$
Z_{1}=(2,1,3)
$$

The Multi-Type Galton Watson process

We now consider a process with types:

The Multi-Type Galton Watson process

We now consider a process with types:

If we define $\mathbb{A}_{i, j}=\mathbb{E}\left(Z_{1}^{j} \mid Z_{0}=e_{i}\right)$,

The Multi-Type Galton Watson process

We now consider a process with types:

If we define $\mathbb{A}_{i, j}=\mathbb{E}\left(Z_{1}^{j} \mid Z_{0}=e_{i}\right)$, then

$$
\lambda^{*} \leq 1 \Longleftrightarrow Z_{n} \rightarrow 0, \text { a.s. }
$$

with λ^{*} the greatest eigenvalue of \mathbb{A}.

The bisexual GW branching process [Daley, '68]

Consider the function $\xi(x, y)=x \min \{y, 1\}$.

The bisexual GW branching process [Daley, '68]

Consider the function $\xi(x, y)=x \min \{y, 1\}$.
(c)
(C) $\quad Z_{0}=2$

The bisexual GW branching process [Daley, '68]

Consider the function $\xi(x, y)=x \min \{y, 1\}$.

The bisexual GW branching process [Daley, '68]

Consider the function $\xi(x, y)=x \min \{y, 1\}$.

The bisexual GW branching process [Daley, '68]

Consider the function $\xi(x, y)=x \min \{y, 1\}$.

The bisexual GW branching process [Daley, '68]

Consider the function $\xi(x, y)=x \min \{y, 1\}$.

The bisexual GW branching process [Daley, '68]

Consider the function $\xi(x, y)=x \min \{y, 1\}$.

Difficulty: We lose the independence property!

The bisexual GW branching process [Daley, '68]

Consider the function $\xi(x, y)=x \min \{y, 1\}$.

Difficulty: We lose the independence property!
Superadditive model [Hull, 1982]:

$$
\xi\left(x_{1}+x_{2}, y_{1}+y_{2}\right) \geq \xi\left(x_{1}, y_{1}\right)+\xi\left(x_{2}, y_{2}\right), \forall x_{1}, x_{2}, y_{1}, y_{2} \in \mathbb{R}_{+}
$$

What about Multi-Type?

Some Multi-Type models that have been studied:

- Mode, 1972: A 3-type bisexual model where inherits the type of the male.
- Karlin - Kaplan, 1973: A Multi-Type version of the Cows and Bulls model, where the couple inherits the type of the female.
- Hull, 1998: A 2-type bisexual model where the couple inherits the type of the male.

But not as deeply as the previous processes!

(1) Motivation

(2) The Multi-Type bGWbp

(3) Results

The Multi-Type bGWbp

We consider a multi-dimensional model
(C)
(C)
(C) $Z_{0}=(1,2)$

In the general case,

$$
Z_{n}=\left(Z_{n}^{1}, \ldots, Z_{n}^{p}\right)
$$

The Multi-Type bGWbp

We consider a multi-dimensional model

In the general case,

$$
\begin{gathered}
Z_{n}=\left(Z_{n}^{1}, \ldots, Z_{n}^{p}\right) \\
F_{n+1}=\left(F_{n+1}^{1}, \ldots, F_{n+1}^{n_{f}}\right), M_{n+1}=\left(M_{n+1}^{1}, \ldots, M_{n+1}^{n_{m}}\right)
\end{gathered}
$$

The Multi-Type bGWbp

We consider a multi-dimensional model

In the general case,

$$
\begin{gathered}
Z_{n}=\left(Z_{n}^{1}, \ldots, Z_{n}^{p}\right) \\
F_{n+1}=\left(F_{n+1}^{1}, \ldots, F_{n+1}^{n_{f}}\right), M_{n+1}=\left(M_{n+1}^{1}, \ldots, M_{n+1}^{n_{m}}\right) \\
Z_{n+1}=\xi\left(\left(F_{n+1}^{1}, \ldots, F_{n+1}^{n_{f}}\right),\left(M_{n+1}^{1}, \ldots, M_{n+1}^{n_{m}}\right)\right)
\end{gathered}
$$

The Multi-Type bGWbp

Assumptions:

- Superadditivity:

$$
\xi\left(x_{1}+x_{2}, y_{1}+y_{2}\right) \geq \xi\left(x_{1}, y_{1}\right)+\xi\left(x_{2}, y_{2}\right) .
$$

- Integrability: The matrices

$$
\mathbb{F}_{i, j}=\mathbb{E}\left(F_{1}^{j} \mid Z_{0}=e_{i}\right), \mathbb{M}_{i, j}=\mathbb{E}\left(M_{1}^{j} \mid Z_{0}=e_{i}\right)
$$

are well defined.

The Multi-Type bGWbp

Assumptions:

- Superadditivity:

$$
\xi\left(x_{1}+x_{2}, y_{1}+y_{2}\right) \geq \xi\left(x_{1}, y_{1}\right)+\xi\left(x_{2}, y_{2}\right)
$$

- Integrability: The matrices

$$
\mathbb{F}_{i, j}=\mathbb{E}\left(F_{1}^{j} \mid Z_{0}=e_{i}\right), \mathbb{M}_{i, j}=\mathbb{E}\left(M_{1}^{j} \mid Z_{0}=e_{i}\right)
$$

are well defined.
This implies:

Proposition

The function $R: \mathbb{N}_{+}^{p} \longrightarrow\left(\mathbb{R}_{+} \cup\{+\infty\}\right)^{p}$ given by

$$
R(z)=\lim _{k \rightarrow+\infty} \frac{\mathbb{E}\left(Z_{1} \mid Z_{0}=k z\right)}{k}
$$

is well defined.

(1) Motivation

(2) The Multi-Type bGWbp

(3) Results

- Law of Large Numbers
- Condition for certain extinction

Law of Large Numbers

What is the role of R ?

$$
R(z)=\lim _{k \rightarrow+\infty} \frac{\mathbb{E}\left(Z_{1} \mid Z_{0}=k z\right)}{k}
$$

Theorem [Fritsch - Villemonais - Z.]

We denote $\left(Z_{n, k}\right)_{n \in \mathbb{N}}$ the process with $Z_{0, k}=k z$. Then

$$
\frac{Z_{n, k}}{k} \xrightarrow[\text { a.s., L1}]{k \rightarrow+\infty} R^{n}(z) .
$$

Law of Large Numbers

The proof relies on additional properties of R :

Lemma

For any $z \in \mathbb{N}^{p}$,

$$
R(z)=\lim _{k \rightarrow+\infty} \frac{\xi(k z \mathbb{F}, k z \mathbb{M})}{k}
$$

$$
\mathbb{F}_{i, j}=\mathbb{E}\left(F_{1}^{j} \mid Z_{0}=e_{i}\right), \mathbb{M}_{i, j}=\mathbb{E}\left(M_{1}^{j} \mid Z_{0}=e_{i}\right)
$$

Fact: The function R is concave.

Condition for certain extinction

Extra assumptions:

- Transcience:

$$
\mathbb{P}\left(Z_{n} \rightarrow 0 \mid Z_{0}=z\right)+\mathbb{P}\left(Z_{n} \rightarrow+\infty \mid Z_{0}=z\right)=1, \quad \forall z \in \mathbb{N}^{p} \backslash\{0\} .
$$

- Plus an extra assumption on the function R.

Condition for certain extinction

Extra assumptions:

- Transcience:

$$
\mathbb{P}\left(Z_{n} \rightarrow 0 \mid Z_{0}=z\right)+\mathbb{P}\left(Z_{n} \rightarrow+\infty \mid Z_{0}=z\right)=1, \quad \forall z \in \mathbb{N}^{p} \backslash\{0\}
$$

- Plus an extra assumption on the function R.

Theorem [Krause, '94]

The eigenvalue problem

$$
R\left(z^{*}\right)=\lambda^{*} z^{*}
$$

has a unique solution with $\lambda^{*}>0$ and $z^{*} \in\left(\mathbb{R}_{+}\right)^{p}, z^{*}>0,\left|z^{*}\right|=1$.

Condition for certain extinction

Define

$$
q_{z}=\mathbb{P}\left(\exists n \in \mathbb{N}, Z_{n}=0 \mid Z_{0}=z\right)
$$

Condition for certain extinction

Define

$$
q_{z}=\mathbb{P}\left(\exists n \in \mathbb{N}, Z_{n}=0 \mid Z_{0}=z\right)
$$

Theorem [Fritsch - Villemonais - Z.]

Assume R is finite. Then,

$$
\lambda^{*} \leq 1 \Longleftrightarrow q_{z}=1, \forall z \in \mathbb{N}^{p} .
$$

If $\lambda^{*}>1$, then $\forall \varepsilon>0, \exists v_{0} \in \mathbb{N}^{p}$ such that if $Z_{0}=v_{0}$

$$
\mathbb{P}\left(Z_{n}>\left(\lambda^{*}-\varepsilon\right)^{n} v_{0}, \forall n \in \mathbb{N}\right)>0
$$

If there exists $z \in\left(\mathbb{R}_{+}\right)^{p}$ such that $R(z)$ is not finite, then $q_{v}<1$ for some $v \in \mathbb{N}^{p}$.

The Multi-Type bisexual Galton-Watson process

	Asexual Process	Bisexual Process
	Classic Galton-Watson process	Bisexual Galton-Watson process
$\begin{aligned} & \dot{d} \\ & \frac{0}{00} \\ & i=1 \\ & i n g ~ \end{aligned}$	$\begin{gathered} p=1, \xi(x, y)=x \\ R(z)=m z \end{gathered}$ Extinction condition: $R(1) \leq 1$	$\begin{aligned} & \qquad p=1, \xi \text { superadditive } \\ & R \text { linear } \\ & \text { Extinction condition: } R(1) \leq 1 \end{aligned}$
$\begin{aligned} & \frac{1}{0} \\ & \frac{D}{\lambda} \\ & \frac{1}{2} \\ & \frac{1}{3} \end{aligned}$	$\begin{gathered} \text { Multi-Type Galton-Watson process } \\ \hline p>1, \xi(x, y)=x \\ R(z)=z \mathbb{A} \end{gathered}$ Extinction condition: $\lambda^{*} \leq 1$	

The Multi-Type bisexual Galton-Watson process

	Asexual Process	Bisexual Process
	Classic Galton-Watson process	Bisexual Galton-Watson process
	$\begin{gathered} p=1, \xi(x, y)=x \\ R(z)=m z \end{gathered}$ Extinction condition: $R(1) \leq 1$	$\begin{gathered} p=1, \xi \text { superadditive } \\ R \text { linear } \end{gathered}$ Extinction condition: $R(1) \leq 1$
	Multi-Type Galton-Watson process	Multi-Type bGWbp
	$\begin{gathered} p>1, \xi(x, y)=x \\ R(z)=z \mathbb{A} \end{gathered}$ Extinction condition: $\lambda^{*} \leq 1$	$p>1, \xi$ superadditive R concave Extinction condition: $\lambda^{*}<1$

Condition for certain extinction

Some examples:
(1) Multi-Type perfect fidelity mating:

- $n_{f}=n_{m}=p$.
- $\xi(x, y)=\min \{x, y\}$.
$-R(z)=\min \{z \mathbb{F}, z \mathbb{M}\}$.

Condition for certain extinction

Some examples:
(1) Multi-Type perfect fidelity mating:

- $n_{f}=n_{m}=p$.
- $\xi(x, y)=\min \{x, y\}$.
- $R(z)=\min \{z \mathbb{F}, z \mathbb{M}\}$.
- A particular case: $\mathbb{F}=\alpha \mathbb{U}, \mathbb{M}=(1-\alpha) \mathbb{U}$. In this case $\lambda^{*}=\min \{\alpha, 1-\alpha\} \lambda_{\mathbb{U}}^{*}, z^{*}=z_{\mathbb{U}}^{*}$.

Condition for certain extinction

Some examples:
(1) Multi-Type perfect fidelity mating:

- $n_{f}=n_{m}=p$.
- $\xi(x, y)=\min \{x, y\}$.
- $R(z)=\min \{z \mathbb{F}, z \mathbb{M}\}$.
- A particular case: $\mathbb{F}=\alpha \mathbb{U}, \mathbb{M}=(1-\alpha) \mathbb{U}$.

In this case $\lambda^{*}=\min \{\alpha, 1-\alpha\} \lambda_{\mathbb{U}}^{*}, z^{*}=z_{\mathbb{U}}^{*}$.
(2) Multi-Type completely promiscuous mating [Karlin - Kaplan, 1973]:

- $p=n_{f}$.
- $\xi(x, y)=x \prod_{i=1}^{n_{m}} \mathbb{1}_{y_{i}>0}$.
- $R(z)=(z \mathbb{F}) \mathbb{1}_{z \mathbb{M}>0}$.
- In this case $\lambda^{*}=\lambda_{\mathbb{F}}^{*}$.

The Multi-Type bisexual Galton-Watson process

Thank You!

Future Work

What can we say about the asymptotic behavior of the process?

Conjecture

There exists a real and positive random variable W such that

$$
\frac{Z_{n}}{\left(\lambda^{*}\right)^{n}} \xrightarrow[\text { a.s. }]{n \rightarrow \infty} W z^{*}
$$

If the conjecture is true, we want to find conditions for:

$$
\left\{Z_{n}>0, \forall n \in \mathbb{N}\right\}=\{W>0\}
$$

Future Work

Other models to consider:

- bGWbp in varying or in random environment.
- bGWbp with immigration.
- Random mating of couples.
- Infinite numer of types.
- Scaling limits

Krause's Result

Consider a function $F:\left(\mathbb{R}_{+}\right)^{p} \longrightarrow\left(\mathbb{R}_{+}\right)^{p}$.

- We say F is primitive if $\exists n \in \mathbb{N}, \forall m \geq n, \forall z \neq 0, F^{(m)}(z)>0$.
- We say F is positively homogeneous if $F(\lambda z)=\lambda F(z), \forall \lambda \in \mathbb{R}, \forall z \in\left(\mathbb{R}_{+}\right)^{p}$.

Krause's Result

Consider a function $F:\left(\mathbb{R}_{+}\right)^{p} \longrightarrow\left(\mathbb{R}_{+}\right)^{p}$.

- We say F is primitive if $\exists n \in \mathbb{N}, \forall m \geq n, \forall z \neq 0, F^{(m)}(z)>0$.
- We say F is positively homogeneous if $F(\lambda z)=\lambda F(z), \forall \lambda \in \mathbb{R}, \forall z \in\left(\mathbb{R}_{+}\right)^{p}$.

Theorem [Krause - 1994]

Consider $F: E \longrightarrow E$ a concave, primitive and positively homogeneous mapping. Then,
(i) The eigenvalue problem $F(x)=\lambda x$ has a unique solution $\left(\lambda^{*}, x^{*}\right) \in \mathbb{R}_{+} \times\left(\mathbb{R}_{+}\right)^{p}$, with $z^{*}>0,\left|z^{*}\right|=1$. If $(\lambda, x) \in \mathbb{R} \times E \backslash\{0\}$ is another solution of the problem, then it must hold that $x=r x^{*}$ for some $r>0$ and $\lambda=\lambda^{*}$.
(ii) $L(x)=\lim _{k \rightarrow \infty} \frac{F^{(k)}(x)}{\left(\lambda^{*}\right)^{k}}$ exists on $\left(\mathbb{R}_{+}\right)^{p}$ and L is a concave and positively homogeneous mapping with $L(x)>0$ for all $x \in\left(\mathbb{R}_{+}\right)^{p} \backslash\{0\}$.

A supermartingale

Krause's Theorem:

$$
\lim _{k \rightarrow+\infty} \frac{R^{k}(z)}{\left(\lambda^{*}\right)^{k}}=C(z) z^{*}
$$

with C a suitable function. We have that

$$
C\left(\frac{Z_{n}}{\left(\lambda^{*}\right)^{n}}\right)_{n \in \mathbb{N}}
$$

is a positive supermartingale.

